On the NASA 2020 rover mission to Jezero crater, the remote determination of the texture, mineralogy and chemistry of rocks is essential to quickly and thoroughly characterize an area and to optimize the selection of samples for return to Earth. As part of the Perseverance payload, SuperCam is a suite of five techniques that provide critical and complementary observations via Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), visible and near-infrared spectroscopy (VISIR), high-resolution color imaging (RMI), and acoustic recording (MIC). SuperCam operates at remote distances, primarily 2–7 m, while providing data at sub-mm to mm scales. We report on SuperCam’s science objectives in the context of the Mars 2020 mission goals and ways the different techniques can address these questions. The instrument is made up of three separate subsystems: the Mast Unit is designed and built in France; the Body Unit is provided by the United States; the calibration target holder is contributed by Spain, and the targets themselves by the entire science team. This publication focuses on the design, development, and tests of the Mast Unit; companion papers describe the other units. The goal of this work is to provide an understanding of the technical choices made, the constraints that were imposed, and ultimately the validated performance of the flight model as it leaves Earth, and it will serve as the foundation for Mars operations and future processing of the data.
In preparation for the SuperCam/Mars Microphone scientific investigation, the acoustic signal associated with the plasma formation during Laser-Induced Breakdown Spectroscopy (LIBS) experiment is studied with regard to the shot-to-shot evolution of the laser induced crater morphology and plasma emission lines. A set of geological targets are depth profiled using a specifically designed LIBS setup coupled with acoustic test bench under ambient terrestrial atmosphere. Experiments confirm that the decrease of the acoustic energy as a function of the number of shots is well correlated with the target hardness/density and also demonstrate that the acoustic energy can be used as a remote tracer of the ablated volume of the target. Listening to LIBS sparks provides a new information relative to the ablation process that is independent from the LIBS spectrum.
The SuperCam instrument suite onboard the Mars 2020 rover will include the Mars Microphone, an experiment designed to record the sounds of the SuperCam laser strikes on rocks and also aeolian noise. In order to record shock waves produced by the laser blasts, the Mars Microphone must be able to record audio signals from 100 Hz to 10 kHz on the surface of Mars, with a sensitivity sufficient to monitor a laser impact at distances up to 4 m. The Aarhus planetary simulator facility has been used to test the Mars 2020 rover microphone in a controlled Martian environment. The end-to-end tests performed in a 6 mbar CO 2 atmosphere, with wind, and also with the microphone at À80 C have demonstrated that the SuperCam/Mars Microphone requirements are satisfied. Tests were also performed on Martian soil simulant targets showing that the variation of the acoustic energy of the shock wave depends on the level of compaction of the target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.