Background
Conventional radiography is commonly used to diagnose knee osteoarthritis (OA), but also to guide clinical decision-making, despite a well-established discordance between radiographic severity and patient symptoms. The incidence and progression of OA is driven, in part, by biomechanical markers. Therefore, these dynamic markers may be a good metric of functional status and actionable targets for clinicians when developing conservative treatment plans. The aim of this study was to assess the associations between biomechanical markers and self-reported knee function compared to radiographic severity.
Methods
This was a secondary analysis of data from a randomized controlled trial (RCT) conducted in primary care clinics with knee OA participants. Correlation coefficients (canonical (ρ) and structural (Corr)) were assessed between the Knee Injury and Osteoarthritis Outcome Score (KOOS) and both, radiographic OA severity using the Kellgren-Lawrence grade, and three-dimensional biomechanical markers quantified by a knee kinesiography exam. Significant differences between coefficients were assessed using Fischer’s z-transformation method to compare correlations from dependent samples.
Results
KOOS and biomechanical data were significantly more associated than KOOS and X-ray grading (ρ: 0.41 vs 0.20; p < 0.001). Structural correlation (Corr) between KOOS and X-ray grade was 0.202 (4% of variance explained), while individual biomechanical markers, such as the flexion during loading, explained up to 14% of KOOS variance (i.e., Corr2). Biomechanical markers showed the strongest associations with Pain and Activity of Daily Living KOOS subscales (both > 36% variance explained), while X-ray grading was most associated with Symptoms subscale (21% explained; all p ≤ 0.001).
Conclusions
Knee biomechanical markers are associated with patient-reported knee function to a greater extent than X-ray grading, but both provide complementary information in the assessment of OA patients. Understanding how dynamic markers relate to function compared to radiographic severity is a valuable step towards precision medicine, allowing clinicians to refine and tailor therapeutic measures by prioritizing and targeting modifiable biomechanical markers linked to pain and function.
Trial registration
Original RCT was approved by the Research Ethics Boards of École de technologie supérieure (H20150505) and Centre hospitalier de l’Université de Montréal (CHUM-CE.14.339), first registered at https://www.isrctn.com/ (ID-ISRCTN16152290) on May 27, 2015.
Measuring knee biomechanics provides valuable clinical information for defining patient-specific treatment options, including patient-oriented physical exercise programs. It can be done by a knee kinesiography test measuring the three-dimensional rotation angles (3D kinematics) during walking, thus providing objective knowledge about knee function in dynamic and weight-bearing conditions. The purpose of this study was to assess whether 3D kinematics can be efficiently used to predict the impact of a physical exercise program on the condition of knee osteoarthritis (OA) patients. The prediction was based on 3D knee kinematic data, namely flexion/extension, adduction/abduction and external/internal rotation angles collected during a treadmill walking session at baseline. These measurements are quantifiable information suitable to develop automatic and objective methods for personalized computer-aided treatment systems. The dataset included 221 patients who followed a personalized therapeutic physical exercise program for 6 months and were then assigned to one of two classes, Improved condition (I) and not-Improved condition (nI). A 10% improvement in pain was needed at the 6-month follow-up compared to baseline to be in the improved group. The developed model was able to predict I and nI with 84.4% accuracy for men and 75.5% for women using a decision tree classifier trained with 3D knee kinematic data taken at baseline and a 10-fold validation procedure. The models showed that men with an impaired control of their varus thrust and a higher pain level at baseline, and women with a greater amplitude of internal tibia rotation were more likely to report improvements in their pain level after 6 months of exercises. Results support the effectiveness of decision trees and the relevance of 3D kinematic data to objectively predict knee OA patients’ response to a treatment consisting of a physical exercise program.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.