Presently, smartphones are used more and more for purposes that have nothing to do with phone calls or simple data transfers. One example is the recognition of human activity, which is relevant information for many applications in the domains of medical diagnosis, elderly assistance, indoor localization, and navigation. The information captured by the inertial sensors of the phone (accelerometer, gyroscope, and magnetometer) can be analyzed to determine the activity performed by the person who is carrying the device, in particular in the activity of walking. Nevertheless, the development of a standalone application able to detect the walking activity starting only from the data provided by these inertial sensors is a complex task. This complexity lies in the hardware disparity, noise on data, and mostly the many movements that the smartphone can experience and which have nothing to do with the physical displacement of the owner. In this work, we explore and compare several approaches for identifying the walking activity. We categorize them into two main groups: the first one uses features extracted from the inertial data, whereas the second one analyzes the characteristic shape of the time series made up of the sensors readings. Due to the lack of public datasets of inertial data from smartphones for the recognition of human activity under no constraints, we collected data from 77 different people who were not connected to this research. Using this dataset, which we published online, we performed an extensive experimental validation and comparison of our proposals.
To bring cutting edge robotics from research centres to social environments, the robotics community must start providing affordable solutions: the costs must be reduced and the quality and usefulness of the robot services must be enhanced. Unfortunately, nowadays the deployment of robots and the adaptation of their services to new environments are tasks that usually require several days of expert work. With this in view, we present a multi-agent system made up of intelligent cameras and autonomous robots, which is easy and fast to deploy in different environments. The cameras will enhance the robot perceptions and allow them to react to situations that require their services. Additionally, the cameras will support the movement of the robots. This will enable our robots to navigate even when there are not maps available. The deployment of our system does not require expertise and can be done in a short period of time, since neither software nor hardware tuning is needed. Every system task is automatic, distributed and based on self-organization processes. Our system is scalable, robust, and flexible to the environment. We carried out several real world experiments, which show the good performance of our proposal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.