We fabricated MgO-based perpendicular magnetic tunnel junctions (p-MTJ) with Ta/CoFeB magnetic electrodes. Synthetic antiferromagnetic (SAF) pinned layers with perpendicular magnetic anisotropy (PMA) were included into the p-MTJs by using two Co/Pd multilayers (MLs) separated by a thin Ru spacer layer. The MTJs stack has the structure bottom contact/free layer CoFeB (1.0)/MgO (1)/pinned layer CoFeB (1.0)/Ta spacer layer/SAF/Ru cap layer/top contact (the units in parenthesis are in nanometers). The SAF was optimized by changing the repetition period n in one of the Co/Pd multilayers and the Ru thickness in order to obtain PMA with antiferromagnetic (AFM) coupling. The Ru spacer values were 0.7, 0.75, 0.8, 0.85, and 0.9 nm. The magnetic studies show that all magnetic films, including the Ta/CoFeB layers, are perpendicularly magnetized. The two Co/Pd MLs are AFM coupled for n > 2. Controlling the Ru thickness, the interlayer exchange coupling strength Jiec can be tailored. Jiec vs. Ru thickness exhibits a simple exponential decay. The electrical properties of the full p-MTJ with SAF show a low resistance-area (RA) product of 44.7 Ω μm2 and a tunnel magnetoresistance (TMR) ratio of 10.2%.
We studied the effect of a thin Ta layer on the perpendicular magnetic anisotropy (PMA) of composite FM1/Ta/FM2 magnetic structures, where FM1 represents the subsystem MgO/CoFeB, and FM2 denotes a [Co/Pd]6 multilayer. The stack without Ta spacer layer shows no PMA. Once a Ta layer is inserted between the thin CoFeB layer and the [Co/Pd]6 multilayer, PMA is observed. The perpendicular magnetization loops show squareness ratios close to unity, indicating the presence of almost complete perpendicular anisotropy. These hysteresis loops also show sharp switching characteristics, indicating that the MgO/CoFeB bilayer and the [Co/Pd]6 multilayer are ferromagnetically coupled together. The coercive field Hc of the composite structure increases as Ta thickness increases. Our results show that Ta layer is essential for integrating MgO/CoFeB and [Co/Pd]6 into a composite magnetic structure with perpendicular anisotropy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.