The use of a hybrid powertrain for a conventional single main rotor helicopter is investigated, with the objective of assessing its feasibility and its potential impact on improving safety, especially for single-engine rotorcraft. The study is focused on the characteristics of the powertrain and required battery pack. It is based on a simple analysis of power required in forward flight and the estimate of the total energy required for a powered landing manoeuvre after thermal engine failure. Current technologies are considered as well as expected improvements, especially as far as energy density and power density of the battery are concerned. The latter analysis is based on current trends for battery and motors technologies, in order to determine the technological breakthrough limit.
This study describes a simple and easily reproducible procedure to generate templates for the hippocampal region. It can be generalized and applied to other brain regions, which may be relevant for neuroimaging studies.
The paper is focused on a tiSsue-Based Standardization Technique (SBST) of magnetic resonance (MR) brain images. Magnetic Resonance Imaging intensities have no fixed tissue-specific numeric meaning, even within the same MRI protocol, for the same body region, or even for images of the same patient obtained on the same scanner in different moments. This affects postprocessing tasks such as automatic segmentation or unsupervised/supervised classification methods, which strictly depend on the observed image intensities, compromising the accuracy and efficiency of many image analyses algorithms. A large number of MR images from public databases, belonging to healthy people and to patients with different degrees of neurodegenerative pathology, were employed together with synthetic MRIs. Combining both histogram and tissue-specific intensity information, a correspondence is obtained for each tissue across images. The novelty consists of computing three standardizing transformations for the three main brain tissues, for each tissue class separately. In order to create a continuous intensity mapping, spline smoothing of the overall slightly discontinuous piecewise-linear intensity transformation is performed. The robustness of the technique is assessed in a post hoc manner, by verifying that automatic segmentation of images before and after standardization gives a high overlapping (Dice index >0.9) for each tissue class, even across images coming from different sources. Furthermore, SBST efficacy is tested by evaluating if and how much it increases intertissue discrimination and by assessing gaussianity of tissue gray-level distributions before and after standardization. Some quantitative comparisons to already existing different approaches available in the literature are performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.