In this paper, a bootstrapping technique is applied to a bulk-driven voltage buffer for canceling the gate-source transconductance in order to improve the cell gain, the linearity and reduce the input-referred noise. The bootstrapped circuitry is conveniently implemented by only using a capacitor and a pseudo resistor. The suitability of the technique is demonstrated by simulation results using a flipped voltage follower, even though it is general and can be applied to other structures. A 1-V buffer is designed in 0.18 µm CMOS technology, showing a 4.3 times improvement in the voltage gain (conventional 0.21 V/V, bootstrapped 0.90 V/V), increasing 5 times the input voltage range for a 1% THD (conventional 50 mV, bootstrapped 250 mV) and reducing the input equivalent noise around a 16% (conventional 180 nV/ √ Hz, bootstrapped 155 nV/ √ Hz at 10 kHz).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.