Modeling of capacitive micromachined ultrasonic transducers (cMUTs) is based on a two-port network with an electrical and a mechanical side. To obtain a distributed model, a solution of the differential equation of motion of the diaphragm for each element of the transducer has to be found. Previous works omit the mechanical load of the cavity behind the diaphragm, i.e., the effect of the gas inside. In this paper, we propose a distributed model for cMUTs that takes this effect into account. A closed-form solution of the mechanical impedance of the membranes has been obtained, including the effect of the restoring forces because of the stiffness of the membrane and because of the compression of the air in the cavity. Simulation results based on the presented model are compared with the experimental data for two types of cMUTs reported in the recent literature. It is demonstrated that the compression of the air has a significant effect on the fundamental frequency of the air transducer, with a deviation of about 22% from the prediction of a model that does not consider the interaction between the vibrating diaphragm and the air cushion
In the design of low-frequency transducer arrays for active sonar systems, the acoustic interactions that occur between the transducer elements have received much attention. Because of these interactions, the acoustic loading on each transducer depends on its position in the array, and the radiated acoustic power may vary considerably from one element to another. Capacitive microfabricated ultrasonic transducers (CMUT) are made of a two-dimensional array of metallized micromembranes, all electrically connected in parallel, arid driven into flexural motion by the electrostatic force produced by an applied voltage. The mechanical impedance of these membranes is typically much lower than the acoustic impedance of water. In our investigations of acoustic coupling in CMUTs, interaction effects between the membranes in immersion were observed, similar to those reported in sonar arrays. Because CMUTs have many promising applications in the field of medical ultrasound imaging, understanding of cross-coupling mechanisms and acoustic interaction effects is especially important for reducing cross-talk between array elements, which can produce artifacts and degrade image quality. In this paper, we report a finite-element study of acoustic interactions in CMUTs and experimental results obtained by laser interferometry measurements. The good agreement found between finite element modeling (FEM) results and optical displacement measurements demonstrates that acoustic interactions through the liquid represent a major source of cross coupling in CMUTs
In this paper we report the design, fabrication process, and characterization of a 64-elements capacitive micromachined ultrasonic transducer (cMUT), 3 MHz center frequency, 100% fractional bandwidth. Using this transducer, we developed a linear probe for application in medical echographic imaging. The probe was fully characterized and tested with a commercial echographic scanner to obtain first images from phantoms and in vivo human body. The results, which quickly follow similar results obtained by other researchers, clearly show the great potentiality of this new emerging technology. The cMUT probe works better than the standard piezoelectric probe as far as the axial resolution is concerned, but it suffers from low sensitivity. At present this can be a limit, especially for in depth operation. But we are strongly confident that significant improvements can be obtained in the very near future to overcome this limitation, with a better transducer design, the use of an acoustic lens, and using well matched, front-end electronics between the transducer and the echographic system
Optical fingerprint scanners suffer from limited depth of penetration and are particularly sensitive to the surface conditions of the skin. Fingerprint scanners based on ultrasounds offer the possibility to explore the surface and the underlying tissues of the finger and to detect blood flow, leading to enhanced robustness and reliability in biometric applications. Capacitive Micromachined Ultrasonic Transducers (cMUTs) have shown to have great potential for use in medical imaging applications. The ease of fabricating broadband high-frequency ultrasound transducers makes the cMUT technology a good candidate for ultrasound based biometrics. This paper presents the design, fabrication and characterization of a cMUT linear array probe optimized for near-field ultrasound imaging. Ultrasound images of fingerprints are obtained using a customized 3D ultrasound scanning system
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.