Whether a quantum critical point (QCP) lies beneath the superconducting dome has been a long-standing issue that remains unresolved in many classes of unconventional superconductors, notably cuprates, heavy fermion compounds and most recently iron-pnictides. The existence of a QCP may offer a route to understand: the origin of their anomalous non-Fermi liquid properties, the microscopic coexistence between unconventional superconductivity and magnetic or some exotic order, and ultimately the mechanism of superconductivity itself. The isovalent substituted iron-pnictide BaFe2(As1−xPx)2 offers a new platform for the study of quantum criticality, providing a unique opportunity to study the evolution of the electronic properties in a wide range of the phase diagram. Recent experiments in BaFe2(As1−xPx)2 have provided the first clear and unambiguous evidence of a second order quantum phase transition lying beneath the superconducting dome.
In a superconductor, the ratio of the carrier density, n, to their effective mass, m * , is a fundamental property directly reflecting the length scale of the superfluid flow, the London penetration depth, λL. In two dimensional systems, this ratio n/m * (∼ 1/λ 2 L ) determines the effective Fermi temperature, TF . We report a sharp peak in the x-dependence of λL at zero temperature in clean samples of BaFe2(As1−xPx)2 at the optimum composition x = 0.30, where the superconducting transition temperature Tc reaches a maximum of 30 K. This structure may arise from quantum fluctuations associated with a quantum critical point (QCP). The ratio of Tc/TF at x = 0.30 is enhanced, implying a possible crossover towards the Bose-Einstein condensate limit driven by quantum criticality.In two families of high temperature superconductors, cuprates and iron-pnictides, superconductivity emerges in close proximity to an antiferromagnetically ordered state, and the critical temperature T c has a dome shaped dependence on doping or pressure [1][2][3]. What happens inside this superconducting dome is still a matter of debate [3][4][5]. In particular, elucidating whether a quantum critical point (QCP) is hidden inside it (Figs. 1A and B) may be key to understanding high-T c superconductivity [4,5]. A QCP marks the position of a quantum phase transition (QPT), a zero temperature phase transition driven by quantum fluctuations [7].The London penetration depth λ L is a property that may be measured at low temperature in the superconducting state to probe the electronic structure of the material, and look for signatures of a QCP. The absolute value of λ L in the zero-temperature limit immediately gives the superfluid density λ −2which is a direct probe of the superconducting state; here m * i and n i are the effective mass and concentration of the superconducting carriers in band i, respectively [8]. Measurements on high-quality crystals are necessary because impurities and inhomogeneity may otherwise wipe out the signatures of the QPT. Another advantage of this approach is that it does not require the application of a strong magnetic field, which may induce a different QCP or shift the zero-field QCP [9].BaFe 2 (As 1−x P x ) 2 is a particularly suitable system for penetration depth measurements as, in contrast to most other Fe-based superconductors, very clean [10] and homogeneous crystals of the whole composition series can be grown [11]. In this system, the isovalent substitution of P for As in the parent compound BaFe 2 As 2 offers an elegant way to suppress magnetism and induce superconductivity [11]. Non-Fermi liquid properties are apparent in the normal state above the superconducting dome ( Fig. 2A) [11,12] and de Haas-van Alphen (dHvA) oscillations [10] have been observed over a wide x range including the superconducting compositions, giving detailed information on the electronic structure. Because P and As are isoelectric, the system remains compensated for all values of x (i.e., volumes of the electron and hole Fermi surfaces...
All conventional metals are known to possess a three-dimensional Fermi surface, which is the locus in reciprocal space of the long-lived electronic excitations that govern their electronic properties at low temperatures. These excitations should have well-defined momenta with components in all three dimensions. The high-transition-temperature (high-T(c)) copper oxide superconductors have unusual, highly two-dimensional properties above the superconducting transition. This, coupled with a lack of unambiguous evidence for a three-dimensional Fermi surface, has led to many new and exotic models for the underlying electronic ground state. Here we report the observation of polar angular magnetoresistance oscillations in the overdoped superconductor Tl2Ba2CuO6+delta in high magnetic fields, which firmly establishes the existence of a coherent three-dimensional Fermi surface. Analysis of the oscillations reveals that at certain symmetry points, however, this surface is strictly two-dimensional. This striking form of the Fermi surface topography, long-predicted by electronic band structure calculations, provides a natural explanation for a wide range of anisotropic properties both in the normal and superconducting states. Our data reveal that, despite their extreme electrical anisotropy, the high-T(c) materials at high doping levels can be understood within a framework of conventional three-dimensional metal physics.
Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe2(As1-xPx){2} as a function of isoelectric substitution (As/P) for 0.41
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.