The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106: 2322-2345. First published July 27, 2011 doi:10.1152/jn.00339.2011The cerebral cortex communicates with the cerebellum via polysynaptic circuits. Separate regions of the cerebellum are connected to distinct cerebral areas, forming a complex topography. In this study we explored the organization of cerebrocerebellar circuits in the human using restingstate functional connectivity MRI (fcMRI). Data from 1,000 subjects were registered using nonlinear deformation of the cerebellum in combination with surface-based alignment of the cerebral cortex. The foot, hand, and tongue representations were localized in subjects performing movements. fcMRI maps derived from seed regions placed in different parts of the motor body representation yielded the expected inverted map of somatomotor topography in the anterior lobe and the upright map in the posterior lobe. Next, we mapped the complete topography of the cerebellum by estimating the principal cerebral target for each point in the cerebellum in a discovery sample of 500 subjects and replicated the topography in 500 independent subjects. The majority of the human cerebellum maps to association areas. Quantitative analysis of 17 distinct cerebral networks revealed that the extent of the cerebellum dedicated to each network is proportional to the network's extent in the cerebrum with a few exceptions, including primary visual cortex, which is not represented in the cerebellum. Like somatomotor representations, cerebellar regions linked to association cortex have separate anterior and posterior representations that are oriented as mirror images of one another. The orderly topography of the representations suggests that the cerebellum possesses at least two large, homotopic maps of the full cerebrum and possibly a smaller third map. somatotopy; motor control; prefrontal; functional magnetic resonance imaging; default network; connectome THE ORGANIZATION OF THE CEREBELLUM has been the topic of debate for more than a century (Manni and Petrosini 2004). Although there is agreement that the cerebellum contains multiple somatomotor representations, a challenging feature of cerebellar anatomy prevents resolving its complete organization: the cerebellum is connected to the cerebral cortex only by way of polysynaptic circuits (Evarts and Thach 1969;Kemp and Powell 1971;Schmahmann and Pandya 1997a;Strick 1985). Efferent projections from the cerebrum synapse initially in the pontine nuclei and then project primarily to the contralateral cerebellar cortex (the pontocerebellar tract). Afferent projections first synapse in the deep cerebellar nuclei (e.g., dentate nucleus) and then project to a second synapse in the contralateral thalamus that in turn serves as a relay to the cerebral cortex (the dentatothalamocortical tract). There are no monosynaptic connections between the cerebrum and cerebellum. As a result, traditional anterograde and retrograde tracing techniques cannot be u...
Background Brain ventricles have been reported to be enlarged in several neuropsychiatric disorders and in aging. Whether human cerebral ventricular volume can decrease over time with psychiatric treatment is not well-studied. The aim of this study was to examine whether inpatients taking serotonin reuptake inhibitors (SRI) exhibited reductions in cerebral ventricular volume. Methods Psychiatric inpatients, diagnosed mainly with depression, substance use, anxiety, and personality disorders, underwent two imaging sessions (Time 1 and Time 2, approximately 4 weeks apart). FreeSurfer was used to quantify volumetric features of the brain, and ANOVA was used to analyze ventricular volume differences between Time 1 and Time 2. Inpatients’ brain ventricle volumes were normalized by dividing by estimated total intracranial volume (eTIV). Clinical features such as depression and anxiety levels were collected at Time 1, Time 1.5 (approximately 2 weeks apart), and Time 2. Results Inpatients consistently taking SRIs (SRI + , n = 44) showed statistically significant reductions of brain ventricular volumes particularly for their left and right lateral ventricular volumes. Reductions in their third ventricular volume were close to significance ( p = .068). The inpatients that did not take SRIs (SRI-, n = 25) showed no statistically significant changes in brain ventricular volumes. The SRI + group also exhibited similar brain structural features to the healthy control group based on the 90% confidence interval comparsions on brain ventricular volume parameters, whereas the SRI- group still exhibited relatively enlarged brain ventricular volumes after treatment. Conclusions SRI treatment was associated with decreased brain ventricle volume over treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.