TX 75083-3836, U.S.A., fax 01-972-952-9435. AbstractExperimental design method is an alternative to traditional sensitivity analysis. The basic idea behind this methodology is to vary multiple parameters at the same time so that maximum inference can be attained with minimum cost. Once the appropriate design is established and the corresponding experiments (simulations) are performed, the results can be investigated by fitting them to a response surface. This surface is usually an analytical or a simple numerical function which is cheap to sample. Therefore it can be used as a proxy to reservoir simulation to quantify the uncertainties.Designing an efficient sensitivity study poses two main issues:• Designing a parameter space sampling strategy and carrying out experiments. • Analyzing the results of the experiments. (Response surface generation) In this paper we investigate these steps by testing various experimental designs and response surface methodologies on synthetic and real reservoir models.We compared conventional designs such as Plackett-Burman, central composite and D-optimal designs and a space filling design technique that aim at optimizing the coverage of the parameter space. We analyzed these experiments using linear, second order polynomials and more complex response surfaces such as kriging, splines and neural networks. We compared these response surfaces in terms of their capability to estimate the statistics of the uncertainty (i.e., P10, P50 and P90 values), their estimation accuracy and their capability to estimate the influential parameters (heavy-hitters). Comparison with our exhaustive simulations showed that experiments generated by the space filling design and analyzed with kriging, splines and quadratic polynomials gave the greatest accuracy while traditional designs and the associated response surfaces performed poorly for some of the cases we studied. We also found good agreement between polynomials and complex response surfaces in terms of estimating the effect of each parameter on the response surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.