The aim of this paper is to compare the heave and pitch motions for the S175 containership, travelling in head regular waves, obtained from frequency domain linear and time domain partly nonlinear potential flow analyses. The frequency domain methods comprise the pulsating and the translating, pulsating Green’s function methods, with the relevant source distribution over the mean wetted surface of the hull. The time domain method uses the radiation and diffraction potentials related to the mean wetted surface, implemented using Impulse Response Functions (IRF), whilst the incident wave and restoring actions are evaluated on the instantaneous wetted surface. The calculations are carried out for a range of Froude numbers, and in the case of the partly nonlinear method for different wave steepness values. Comparisons are made with available experimental measurements. The discussion focuses on the necessity for a nonlinear approach for predicting the radiation potential and the possible numerical methods for its formulation.
The aim of this paper is to compare the heave and pitch motions for the S175 containership, travelling in head regular waves, obtained from frequency domain linear and time domain partly nonlinear potential flow analyses. The frequency domain methods comprise the pulsating and the translating, pulsating Green's function methods, with the relevant source distribution over the mean wetted surface of the hull. The time domain method uses the radiation and diffraction potentials related to the mean wetted surface, implemented using Impulse Response Functions (IRF), whilst the incident wave and restoring actions are evaluated on the instantaneous wetted surface. The calculations are carried out for a range of Froude numbers, and in the case of the partly nonlinear method for different wave steepness values. Comparisons are made with available experimental measurements. The discussion focuses on the necessity for a nonlinear approach for predicting the radiation potential and the possible numerical methods for its formulation. * Pitch-pitch IRF in body axes (kg m 2 s -2 ) m w * Pitch-heave IRF in body axes (kg m s -2 ) M ij Element of mass matrix in equilibrium axes q q~ , & M M Pitch-pitch oscillatory coefficients for velocity and acceleration in body axes (kg m 2 s -1 , kg m 2 ) w w~ , & M M Pitch-heave oscillatory coefficients for velocity and acceleration in body axes ( k g m s -1 , kg m) q q & ,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.