Treatment of titanium tetrachloride (2 equiv) with dimethyl diselenide or diethyl diselenide (1 equiv) in hexane at 0 degrees C, followed by crystallization at -20 degrees C, afforded (TiCl(4))(2)(Se(2)(CH(3))(2)) (78%) and (TiCl(4))(2)(Se(2)(CH(2)CH(3))(2)) (63%), respectively, as red and orange crystalline solids. (TiCl(4))(2)(Se(2)(CH(2)CH(3))(2)) is stable in solution and in the solid state at 23 degrees C, but (TiCl(4))(2)(Se(2)(CH(3))(2)) decomposes to TiCl(4)(Se(CH(3))(2))(2), gray selenium, and other products upon standing in hexane solution, in the solid state, or upon sublimation at 250 degrees C. Treatment of titanium tetrachloride with 2 equiv of dimethyl selenide or diethyl selenide in hexane at ambient temperature afforded a spectroscopically pure brick red solid of TiCl(4)(Se(CH(3))(2))(2) (96%) or TiCl(4)(Se(CH(2)CH(3))(2))(2) (96%), respectively. X-ray crystal structures of (TiCl(4))(2)(Se(2)(CH(2)CH(3))(2)), TiCl(4)(Se(CH(3))(2))(2), and TiCl(4)(Se(CH(2)CH(3))(2))(2) were determined to establish solid state nuclearities. (TiCl(4))(2)(Se(2)(CH(2)CH(3))(2)) crystallizes in the hexagonal space group P3(1)21 with a = 12.106(1) Å, c = 10.786(1) Å, V = 1368.8(4) Å(3), and Z = 3. TiCl(4)(Se(CH(3))(2))(2) crystallizes in the monoclinic space group P2(1)/n with a = 8.175(1) Å, b = 13.051(1) Å, c = 16.871(3) Å, beta = 102.675(8) degrees, V = 1756.3(2) Å(3), and Z = 4. TiCl(4)(Se(CH(2)CH(3))(2))(2) crystallizes in the monoclinic space group P2(1)/n with a = 6.404(4) Å, b = 16.376(7) Å, c = 13.058(8) Å, beta = 101.45(4) degrees, V = 1342(1) Å(3), and Z = 4. TiCl(4)(Se(CH(3))(2))(2) and TiCl(4)(Se(CH(2)CH(3))(2))(2) were evaluated as precursors to titanium diselenide films. TiCl(4)(Se(CH(3))(2))(2) was not a good precursor, but TiCl(4)(Se(CH(2)CH(3))(2))(2) afforded rose-bronze colored titanium diselenide films at substrate temperatures of 500-600 degrees C. The films were characterized by X-ray powder diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. Surprisingly, titanium diselenide films prepared from TiCl(4)(Se(CH(2)CH(3))(2))(2) are moisture sensitive and are apparently hydrolyzed by ambient moisture to titanium dioxide and hydrogen selenide. The relevance of the coordination chemistry to the development of precursors to titanium diselenide films is discussed.
Reactions of niobium and tantalum pentachlorides with tert-butylamine (>/=6 equiv) in benzene afford the dimeric imido complexes [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (90%) and [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) (79%). The niobium complex exists as two isomers in solution, while the tantalum complex is composed of three major isomers and at least two minor isomers. Analogous treatments with isopropylamine (>/=7 equiv) give the monomeric complexes NbCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%) and TaCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2) (84%). The monomeric complexes are unaffected by treatment with excess isopropylamine, while the dimeric complexes are cleaved to the monomers MCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)(2) upon addition of excess tert-butylamine in chloroform solution. Treatment of niobium and tantalum pentachlorides with 2,6-diisopropylaniline affords insoluble precipitates of [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%) and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (100%), which react with 4-tert-butylpyridine to afford the soluble complexes [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (45%) and [4-t-C(4)H(9)C(5)H(4)NH](2)[TaCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] (44%). Sublimation of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), MCl(2)(N(i)Pr)(NH(i)Pr)(NH(2)(i)Pr)(2), and [NH(3)(2,6-(CH(CH(3))(2))(2)C(6)H(3))](2)[MCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] leads to decomposition to give [MCl(3)(NR)(NH(2)R)](2) as sublimates (32-49%), leaving complexes of the proposed formulation MCl(NR)(2) as nonvolatile residues. By contrast, [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) sublimes without chemical reaction. Analysis of the organic products obtained from thermal decomposition of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2) showed isobutylene and tert-butylamine in a 2.2:1 ratio. Mass spectra of [NbCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), [TaCl(2)(N(t)Bu)(NH(t)Bu)(NH(2)(t)Bu)](2), and [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) showed the presence of dimeric imido complexes, monomeric imido complexes, and nitrido complexes, implying that such species are important gas phase species in CVD processes utilizing these molecular precursors. The crystal structures of [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))], [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2), [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2), and [TaCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,6-(CH(CH(3))(2))(2)C(6)H(3)))](2) were determined. [4-t-C(4)H(9)C(5)H(4)NH](2)[NbCl(5)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))] crystallizes in the space group P2(1)/c with a = 12.448(3) Å, b = 10.363(3) Å, c = 28.228(3) Å, beta = 94.92(1) degrees, V = 3628(5) Å(3), and Z = 4. [NbCl(3)(N(i)Pr)(NH(2)(i)Pr)](2) crystallizes in the space group P2(1)/c with a = 9.586(4) Å, b = 12.385(4) Å, c = 11.695(4) Å, beta = 112.89(2) degrees, V = 1279.0(6) Å(3), and Z = 2. [NbCl(3)(N(2,6-(CH(CH(3))(2))(2)C(6)H(3)))(NH(2)(2,...
Tetrahalidocuprates(II) show a high degree of structural flexibility. We present the results of crystallographic and electron paramagnetic resonance (EPR) spectroscopic analyses of four new tetrabromidocuprate(II) compounds and compare the results with previously reported data. The cations in the new compounds are the sterically demanding benzyltriphenylphosphonium, methyltriphenylphosphonium, tetraphenylphosphonium, and hexadecyltrimethylammonium ions; they were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. X-Ray crystallography shows that in all four complexes the [CuBr 4 ] 2À units have a distorted tetrahedral coordination geometry which is in agreement with DFT calculations. The EPR hyperfine structure was not resolved. This is due to the exchange broadening resulting from still incomplete separation of the paramagnetic Cu(II) centres. Nevertheless, the principal values of the electron Zeemann tensor (g || and g > ) of the complexes could be determined. A correlation of structural (X-ray) parameters with the spin density at the copper centres (DFT) is well reflected in the EPR spectra of the bromidocuprates. This enables the correlation of X-ray and EPR parameters to predict the structure of tetrabromidocuprates in physical states other than the crystalline state. As a result, we provide a method to structurally characterize [CuBr 4 ] 2À in, for example, ionic liquids or in solution, which has important implications for e.g. catalysis or materials science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.