Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa.
The addition of genomic information to our understanding of oral disease is driving important changes in oral health care. It is anticipated that genome-derived information will promote a deeper understanding of disease etiology and permit earlier diagnosis, allowing for preventative measures prior to disease onset rather than treatment that attempts to repair the diseased state. Advances in genome technologies have fueled expectations for this proactive healthcare approach. Application of genomic testing is expanding and has already begun to find its way into the practice of clinical dentistry. To take full advantage of the information and technologies currently available, it is vital that dental care providers, consumers, and policymakers be aware of genomic approaches to understanding of oral diseases and the application of genomic testing to disease diagnosis and treatment. Ethical, legal, clinical, and educational initiatives are also required to responsibly incorporate genomic information into the practice of dentistry. This article provides an overview of the application of genomic technologies to oral health care and introduces issues that require consideration if we are to realize the full potential of genomics to enable the practice of personalized dental medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.