Patient ForumThe content of these European Society of Cardiology (ESC) / European Association for Cardio-Thoracic Surgery (EACTS) Guidelines has been published for personal and educational use only. No commercial use is authorized. No part of the ESC/EACTS Guidelines may be translated or reproduced in any form without written permission from the ESC and the EACTS. Permission can be obtained upon submission of a written request to Oxford University Press, the publisher of the European Heart Journal and the party authorized to handle such permissions on behalf of the ESC (
A high-time resolution Neutron Monitor Database (NMDB) has started to be realized in the frame of the Seventh Framework Programme\ud of the European Commission. This database will include cosmic ray data from at least 18 neutron monitors distributed around\ud the world and operated in real-time. The implementation of the NMDB will provide the opportunity for several research applicationsmost of which will be realized in real-time mode. An important one will be the establishment of an Alert signal when dangerous solar\ud cosmic ray particles are heading to the Earth, resulting into ground level enhancements effects registered by neutron monitors. Furthermore,\ud on the basis of these events analysis, the mapping of all ground level enhancement features in near real-time mode will provide an\ud overall picture of these phenomena and will be used as an input for the calculation of the ionization of the atmosphere. The latter will beuseful together with other contributions to radiation dose calculations within the atmosphere at several altitudes and will reveal the\ud absorbed doses during flights. Moreover, special algorithms for anisotropy and pitch angle distribution of solar cosmic rays, which have\ud been developed over the years, will also be set online offering the advantage to give information about the conditions of the interplanetary\ud space. All of the applications will serve the needs of the modern world which relies at space environment and will use the extensivenetwork of neutron monitors as a multi-directional spectrographic detector. On top of which, the decreases of the cosmic ray intensity –\ud known as Forbush decreases – will also be analyzed and a number of important parameters such as galactic cosmic ray anisotropy will be\ud made available to the users of NMDB. A part of the NMDB project is also dedicated to the creation of a public outreach website with the scope to inform about cosmic rays and their possible effects on humans, technological systems and space-terrestrial environment. Therefore, NMDB will also stand as an informative gate on space research through neutron monitor's data usage.\ud © 2010 COSPAR. Published by Elsevier Ltd. All rights reserved
Aims. In the presence of a sufficient amount of target material, γ-rays can be used as a tracer in the search for sources of Galactic cosmic rays (CRs). Here we present deep observations of the Galactic center (GC) region with the MAGIC telescopes and use them to infer the underlying CR distribution and to study the alleged PeV proton accelerator at the center of our Galaxy. Methods. We used data from ≈100 h observations of the GC region conducted with the MAGIC telescopes over five years (from 2012 to 2017). Those were collected at high zenith angles (58−70 deg), leading to a larger energy threshold, but also an increased effective collection area compared to low zenith observations. Using recently developed software tools, we derived the instrument response and background models required for extracting the diffuse emission in the region. We used existing measurements of the gas distribution in the GC region to derive the underlying distribution of CRs. We present a discussion of the associated biases and limitations of such an approach. Results. We obtain a significant detection for all four model components used to fit our data (Sgr A*, “Arc”, G0.9+0.1, and an extended component for the Galactic Ridge). We observe no significant difference between the γ-ray spectra of the immediate GC surroundings, which we model as a point source (Sgr A*) and the Galactic Ridge. The latter can be described as a power-law with index 2 and an exponential cut-off at around 20 TeV with the significance of the cut-off being only 2σ. The derived cosmic-ray profile hints to a peak at the GC position and with a measured profile index of 1.2 ± 0.3 is consistent with the 1/r radial distance scaling law, which supports the hypothesis of a CR accelerator at the GC. We argue that the measurements of this profile are presently limited by our knowledge of the gas distribution in the GC vicinity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.