Bortezomib is a proteasome inhibitor showing strong antitumor activity against many tumors, primarily multiple myeloma. Bortezomib-induced neuropathic pain is the main side effect and the dose-limiting factor of the drug in clinical practice. In order to obtain a pre-clinical model to reproduce the characteristic pain symptoms in bortezomib-treated patients, we developed an animal model of bortezomib-induced nociceptive sensory neuropathy. In this study, bortezomib (0.15 or 0.20mg/kg) was administered to Wistar rats three times/week for 8 weeks, followed by a 4 week follow-up period. At the end of the treatment period a significant decrease in weight gain was observed in the treated groups vs. controls, and hematological and histopathological parameters were evaluated. After the treatment period, both doses of bortezomib induced a severe reduction in nerve conduction velocity and demonstrated a dose-cumulative effect of the drug. The sensory behavioral assessment showed the onset of mechanical allodynia, while no effect on thermal perception was observed. Sciatic nerves and dorsal root ganglia (DRG) were collected at the end of the 8-week treatment and at the end of the follow-up period. The pathological examination revealed a dose-dependent axonopathy of the unmyelinated fibers in nerves of treated animals. No pathological alteration in most of DRG satellite cells and neurons was observed. Therefore, this animal model may be useful for studying the neurotoxicity and pain onset mechanisms related to bortezomib treatment.
1-Deoxysphingolipids (1-deoxySLs) are atypical neurotoxic sphingolipids that are formed by the serinepalmitoyltransferase (SPT). Pathologically elevated 1-deoxySL concentrations cause hereditary sensory and autonomic neuropathy type 1 (HSAN1), an axonal neuropathy associated with several missense mutations in SPT. Oral L-serine supplementation suppressed the formation of 1-deoxySLs in patients with HSAN1 and preserved nerve function in an HSAN1 mouse model. Because 1-deoxySLs also are elevated in patients with type 2 diabetes mellitus, L-serine supplementation could also be a therapeutic option for diabetic neuropathy (DN). This was tested in diabetic STZ rats in a preventive and therapeutic treatment scheme. Diabetic rats showed significantly increased plasma 1-deoxySL concentrations, and L-serine supplementation lowered 1-deoxySL concentrations in both treatment schemes (P < 0.0001). L-serine had no significant effect on hyperglycemia, body weight, or food intake. Mechanical sensitivity was significantly improved in the preventive (P < 0.01) and therapeutic schemes (P < 0.001). Nerve conduction velocity (NCV) significantly improved in only the preventive group (P < 0.05). Overall NCV showed a highly significant (P = 5.2E-12) inverse correlation with plasma 1-deoxySL concentrations. In summary, our data support the hypothesis that 1-deoxySLs are involved in the pathology of DN and that an oral L-serine supplementation could be a novel therapeutic option for treating DN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.