We present a thermodynamic model of adsorption-induced deformation of microporous carbons. The model represents the carbon structure as a macroscopically isotropic disordered three-dimensional medium composed of stacks of slit-shaped pores of different sizes embedded in an incompressible amorphous matrix. Adsorption stress in pores is calculated by means of Monte Carlo simulations. The proposed model reproduces qualitatively the experimental nonmonotonic dilatometric deformation curve for argon adsorption on carbide-derived activated carbon at 243 K and pressure up to 1.2 MPa. The elastic deformation (contraction at low pressures and swelling at higher pressures) results from the adsorption stress that depends strongly on the pore size. The pore size distribution determines the shape of the deformation curve, whereas the bulk modulus controls the extent of the sample deformation.
A simple three-state lattice model that incorporates two states for locally ordered and disordered forms of liquid water in addition to empty cells is introduced. The model is isomorphic to the Blume-Emery-Griffith model. The locally ordered (O) and disordered (D) forms of water are treated as two components, and we assume that the density of the D component is larger. The density of the sample is determined by the fraction of cells occupied by the O and D forms of water. Due to the larger density of the D state, the strength of the van der Waals (vdW) interactions increases in the direction O-O
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.