Abnormalities contributing to the pathogenesis of non-insulin-dependent diabetes mellitus include impaired  cell function, peripheral insulin resistance, and increased hepatic glucose production. Glucocorticoids are diabetogenic hormones because they decrease glucose uptake and increase hepatic glucose production. In addition, they may directly inhibit insulin release. To evaluate that possible role of glucocorticoids in  cell function independent of their other effects, transgenic mice with an increased glucocorticoid sensitivity restricted to their  cells were generated by overexpressing the glucocorticoid receptor (GR) under the control of the insulin promoter. Intravenous glucose tolerance tests showed that the GR transgenic mice had normal fasting and postabsorptive blood glucose levels but exhibited a reduced glucose tolerance compared with their control littermates. Measurement of plasma insulin levels 5 min after intravenous glucose load demonstrated a dramatic decrease in acute insulin response in the GR transgenic mice. These results show that glucocorticoids directly inhibit insulin release in vivo and identify the pancreatic  cell as an important target for the diabetogenic action of glucocorticoids. (
A monoclonal antibody against the rat liver glucocorticoid receptor was used in combination with rabbit antibodies against tyrosine hydroxylase, phenylethanolamine N-methyltransferase, and 5-hydroxytryptamine to demonstrate strong glucocorticoid receptor immunoreactivity in large numbers of central monoaminergic nerve cell bodies of the male rat. The receptor immunoreactivity was predominantly located in the nucleus, whereas the tyrosine hydroxylase, phenylethanolamine N-methyltransferase, and 5-hydroxytryptamine were detected mainly in the cytoplasm. The vast majority of the noradrenergic nerve cell bodies of groups Al-A7 and of the 5-hydroxytryptaminergic cell bodies of groups Bl-B9 were found to contain strong glucocorticoid receptor immunoreactivity. The majority of the phenylethanolamine N-methyltransferase-immunoreactive nerve cells of the adrenergic cell groups C1-C3 and of the dorsal subnuclei of the nucleus tractus solitarius in the medulla oblongata were also strongly immunoreactive for glucocorticoid receptor. In the midbrain dopaminergic groups A8-AlO, moderately (A8, A9) to strongly (AlO) glucocorticoid receptor-immunoreactive cells were found, ranging from 40 to 75% of the total population. In the hypothalamic dopaminergic cell groups, all the cells of groups A12 and A14, as well as the majority of the dopaminergic cells of the zona incerta (A13), were found to contain moderate to strong glucocorticoid receptor immunoreactivity, but none of the large dopaminergic cells of the posterior hypothalamus (All) showed such immunoreactivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.