Patients with biallelic loss-of-function variants of AIRE suffer from autoimmune polyendocrine syndrome type-1 (APS-1) and produce a broad range of autoantibodies (auto-Abs), including circulating auto-Abs neutralizing most type I interferons (IFNs). These auto-Abs were recently reported to account for at least 10% of cases of life-threatening COVID-19 pneumonia in the general population. We report 22 APS-1 patients from 21 kindreds in seven countries, aged between 8 and 48 yr and infected with SARS-CoV-2 since February 2020. The 21 patients tested had auto-Abs neutralizing IFN-α subtypes and/or IFN-ω; one had anti–IFN-β and another anti–IFN-ε, but none had anti–IFN-κ. Strikingly, 19 patients (86%) were hospitalized for COVID-19 pneumonia, including 15 (68%) admitted to an intensive care unit, 11 (50%) who required mechanical ventilation, and four (18%) who died. Ambulatory disease in three patients (14%) was possibly accounted for by prior or early specific interventions. Preexisting auto-Abs neutralizing type I IFNs in APS-1 patients confer a very high risk of life-threatening COVID-19 pneumonia at any age.
On the basis of sequence variation in the UL55 gene that encodes glycoprotein B (gB), human cytomegalovirus (CMV) can be classified into 4 gB genotypes. The goal of the present study was to determine the distribution of CMV gB genotypes and the effect of gB type on clinical outcomes in a cohort of immunocompromised patients, including both transplant recipients and nonrecipients. The distribution of gB genotypes was as follows: gB1, 28.9% of patients; gB2, 19.6%; gB3, 23.7%; gB4, 2.0%; and mixed infection, 25.8%. In contrast to patients infected with a single gB genotype, patients infected with multiple gB genotypes developed progression to CMV disease, had an increased rate of graft rejection, had higher CMV loads, and were significantly more often infected with other herpesviruses. The presence of multiple gB genotypes, rather than the presence of a single gB genotype, could be a critical factor associated with severe clinical manifestations in immunocompromised patients.
Monocytes/macrophages are key cells in the pathogenesis of human CMV (HCMV) infection, but the in vitro rate of viral production in primary human monocyte-derived macrophages (MDM) is considerably lower than in fibroblasts. Considering that the NF-κB signaling pathway is potentially involved in the replication strategy of HCMV through efficient transactivation of the major immediate-early promoter (MIEP), efficient viral replication, and late gene expression, we investigated the composition of the NF-κB complex in HCMV-infected MDMs and fibroblasts. Preliminary studies showed that HCMV could grow in primary MDM culture but that the viral titer in culture supernatants was lower than that observed in the supernatants of more permissive MRC5 fibroblasts. EMSA and microwell colorimetric NF-κB assay demonstrated that HCMV infection of MDMs increased p52 binding activity without activating the canonical p50/p65 complex. Moreover, Bcl-3 was up-regulated and was demonstrated to associate with p52, indicating p52/Bcl-3 complexes as the major component of the NF-κB complex in MDMs. Luciferase assays in promonocytic U937 cells transfected with an MIEP-luciferase reporter construct demonstrated MIEP activation in response to p52 and Bcl-3 overexpression. Chromatin immunoprecipitation assay demonstrated that p52 and Bcl-3 bind the MIEP in acutely HCMV-infected MDMs. In contrast, HCMV infection of MRC5 fibroblasts resulted in activation of p50/p65 heterodimers. Thus, activation of p52/Bcl-3 complexes in MDMs and p50/p65 heterodimers in fibroblasts in response to HCMV infection might explain the low-level growth of the virus in MDMs vs efficient growth in fibroblasts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.