Mutations in the gene for the cardiac isoform of myosin binding protein C (MyBP-C) have been identified as the cause of chromosome 11-associated autosomal-dominant familial hypertrophic cardiomyopathy (FHC). Most mutations produce a truncated polypeptide that lacks the sarcomeric binding region. We have now investigated the expression pattern of the cardiac and skeletal isoforms of cMyBP-C in mice and humans by in situ hybridization and immunofluorescence microscopy using specific antibodies and probes. We demonstrate that the cardiac isoform is expressed only in cardiac muscle throughout development. The slow and fast isoforms of MyBP-C remain specific for skeletal muscle, where they can be coexpressed. Immunological evidence also suggests that an embryonic isoform of MyBP-C precedes the expression of slow MyBP-C in developing skeletal muscle. This suggests that transcomplementation of MyBP-C isoforms is possible in skeletal but not cardiac muscle.
A series of multifunctional codrugs (1-4), obtained by joining L-Dopa (LD) and dopamine (DA) with (R)-alpha-lipoic acid (LA), was synthesized and evaluated as potential codrugs with antioxidant and iron-chelating properties. These multifunctional molecules were synthesized to overcome the pro-oxidant effect associated with LD therapy. The physicochemical properties, together with the chemical and enzymatic stabilities of synthesized compounds, were evaluated in order to determine both their stability in aqueous medium and their sensitivity in undergoing enzymatic cleavage by rat and human plasma to regenerate the original drugs. The new compounds were tested for their radical scavenging activities, using a test involving the Fe (II)-H2O2-induced degradation of deoxyribose, and to evaluate peripheral markers of oxidative stress such as plasmatic activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma. Furthermore, we showed the central effects of compounds 1 and 2 on spontaneous locomotor activity of rats in comparison with LD-treated animals. From the results obtained, compounds 1-4 appeared stable at a pH of 1.3 and in 7.4 buffered solution; in 80% human plasma they were turned into DA and LD. Codrugs 1-4 possess good lipophilicity (log P > 2 for all tested compounds). Compounds 1 and 2 seem to protect partially against the oxidative stress deriving from auto-oxidation and MAO-mediated metabolism of DA. This evidence, together with the "in vivo" dopaminergic activity and a sustained release of the parent drug in human plasma, allowed us to point out the potential advantages of using 1 and 2 rather than LD in treating pathologies such as Parkinson's disease, characterized by an evident decrease of DA concentration in the brain.
The present work reports the synthesis of trans-2-amino-5(6)-fluoro-6(5)-hydroxy-1-phenyl-2,3-dihydro-1H-indenes (4a-f, 5a-f) as a continuation of our studies to better understand the significance of the halo substituent in the trans-1-phenyl-2-aminoindane series and to extend knowledge of the monophenolic ligands of DA receptors. The affinity of the new compounds and related methoxylated precursors (10-15 and 18-23) was estimated in vitro by displacement of [(3)H]SCH23390 (for D(1)-like receptors) or [(3)H]YM-09-151-2 (for D(2)-like receptors) from homogenates of porcine striatal membranes. The results indicate that unsubstituted amines 4a, 5a, 10, and 11 are poorly effective at DA receptors. The introduction of two n-propyl groups on the nitrogen atom (compounds 14, 15, 4c, and 5c) and N-allyl-N-methyl- or N-methyl-N-propyl- substitution (compounds 20-23, 4e, 4f, 5e, 5f) increased the D(2)-like affinities and selectivity. The D(2)-like agonistic activity of selected compounds 15, 20, 21, 4e, 5c, and 5e was proved by evaluating their effects on the cyclic guanosine monophosphate (cGMP) content in rat neostriatal membranes. All tested compounds displayed a potential dopamine D(2)-like agonist profile decreasing basal levels of cGMP. The selective D(2)-like agonism of compounds 20 and 5e was proved by their effects on basal striatal adenylyl cyclase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.