In vertebrate skeletal muscle, the voltage-dependent mechanism of sarcoplasmic reticulum (SR) Ca2+ release, commonly referred to as excitation-contraction (E-C) coupling, is mediated by the voltage-sensing dihydropyridine receptor (DHPR), which is believed to affect SR Ca2+ release through a physical interaction with the SR ryanodine receptor (RYR)/Ca2+ release channel. Scatchard analysis of ligand binding of [3H]PN200-110 to the DHPR and [3H]ryanodine to the RYR indicated the presence of high-affinity sites in muscle homogenates, with maximum binding (Bmax) values of 72 +/- 26 and 76 +/- 30 pmol/g wet wt for rabbit skeletal muscle, and 27 +/- 14 and 44 +/- 13 pmol/g wet wt for frog skeletal muscle, respectively. The Bmax values corresponded to a PN200-110-to-ryanodine binding ratio of 0.98 +/- 0.26 and 0.61 +/- 0.24 for rabbit and frog skeletal muscle, respectively, and were found by Student's t test to be significantly different (P < 0.02, n = 7). These results are compared with measurements with isolated rabbit skeletal muscle membrane fractions and discussed in relation to our current understanding of the mechanism of E-C coupling in skeletal muscle.
The left ventricular free wall, septum, and atrium of canine heart may express functionally related, if not identical, ryanodine receptor/Ca2+ release channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.