The nitrogen-vacancy center (NV) in diamond, with its exceptional spin coherence and convenience in optical spin initialization and readout, is increasingly used both as a quantum sensor and as a building block for quantum networks. Employing photonic structures for maximizing the photon collection efficiency in these applications typically leads to broadened optical linewidths for the emitters, which are commonly created via nitrogen ion implantation. With studies showing that only native nitrogen atoms contribute to optically coherent NVs, a natural conclusion is to either avoid implantation completely or substitute nitrogen implantation by an alternative approach to vacancy creation. Here, we demonstrate that implantation of carbon ions yields a comparable density of NVs as implantation of nitrogen ions and that it results in NV populations with narrow optical linewidths and low charge-noise levels even in thin diamond microstructures. We measure a median NV linewidth of 150 MHz for structures thinner than 5 μm, with no trend of increasing linewidths down to the thinnest measured structure of 1.9 μm. We propose a modified NV creation procedure in which the implantation is carried out after instead of before the diamond fabrication processes and confirm our results in multiple samples implanted with different ion energies and fluences.
The nitrogen-vacancy center (NV) in diamond, with its exceptional spin coherence and convenience in optical spin initialization and readout, is increasingly used both as a quantum sensor and as a building block for quantum networks. Employing photonic structures for maximizing the photon collection efficiency in these applications typically leads to broadened optical linewidths for the emitters, which are commonly created via nitrogen ion implantation. With studies showing that only native nitrogen atoms contribute to optically coherent NVs, a natural conclusion is to either avoid implantation completely, or substitute nitrogen implantation by an alternative approach to vacancy creation. Here, we demonstrate that implantation of carbon ions yields a similar yield of NVs as implantation of nitrogen ions, and that it results in NV populations with narrow optical linewidths and low charge-noise levels even in thin diamond microstructures. We measure a median NV linewidth of 150 MHz for structures thinner than 5 µm, with no trend of increasing linewidths down to the thinnest measured structure of 1.9 µm. We propose a modified NV creation procedure in which the implantation is carried out after instead of before the diamond fabrication processes, and confirm our results in multiple samples implanted with different ion energies and fluences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.