Predictive methods, physicochemical measurements, and structure activity relationship studies suggest that corticotropin-releasing factor (CRF; corticoliberin), its family members, and competitive antagonists (resulting from N-terminal deletions) usually assume an a-helical conformation when interacting with the CRF receptor(s). To test this hypothesis further, we have scanned the whole sequence of the CRF antagonist Nle21'38]r/hCRF-(12-41) (r/hCRF, rat/human CRF; Nle, norleucine) with an i-(i + 3) bridge consisting of the Giu-Xaa-Xa:-Lys scaffold. We have found astressin {cyclo (30)(31)(32)(33) Nle2l,38,Glu30,Lys33] Corticotropin-releasing factor (CRF; corticoliberin) is a 41-residue peptide amide which stimulates the release of corticotropin (ACTH) (1, 2) and acts within the brain to mediate a wide range of stress responses (3). The actions of CRF are mediated through binding to CRF receptors, several of which have been characterized recently (4-10). These receptors, like those for growth hormone-releasing factor, calcitonin, and vasoactive intestinal peptide, are coupled via G proteins and have seven putative transmembrane domains. The actions of CRF can also be modulated by a 37-kDa CRF-binding protein (CRF-BP) (11). To probe the physiological role of CRF, we have developed competitive antagonists that are particularly potent when administered in the central nervous system; however, these same analogs bind pituitary receptors with lower affinity than does CRF, and their peripheral administration results in weak and short-lived effects in vivo (12). Synthetic CRF antagonists such as the a-helical CRF-(9-41)
A variety of hypophysiotropic peptides or proteins have been reported to be present in mammalian gonads. Inhibin, a hormone that under most circumstances selectively suppresses the secretion of follicle-stimulating hormone (FSH) but not luteinizing hormone (LH), has been isolated from the gonadal fluids of several species and characterized as a heterodimeric protein consisting of alpha- and beta-polypeptides associated by disulphide bonds. The complete amino-acid sequences of the precursors of porcine and human inhibin alpha-subunits and two distinct porcine inhibin beta-subunits (beta A and beta B) have been deduced from complementary DNA sequences. Gonadotropin releasing peptides have also been found in the gonad and have generally been shown to be active in radioreceptor assays for gonadotropin releasing hormone (GnRH) but to exhibit different chromatographic and immunological characteristics from those of GnRH. During our purification of inhibin from porcine follicular fluid, we noted fractions that could stimulate the secretion of FSH by cultured anterior pituitary cells. We report here the purification of an FSH releasing protein (FRP) and its characterization by SDS-polyacrylamide gel electrophoresis under non-reducing and reducing conditions and by partial sequence analysis. Our results indicate that porcine gonadal FRP is a homodimer consisting of two inhibin beta A-chains linked by disulphide bonds. FRP is highly potent (50% effective concentration (EC50) approximately 25 pM) in stimulating the secretion and biosynthesis of FSH but not of LH or any other pituitary hormone. In contrast to the effects of GnRH and other reported gonadal gonadotropin releasing fractions, the action of FRP is not mediated by GnRH receptors.
Urocortin, a new member of the CRF peptide family which also includes urotensin I and sauvagine, was recently cloned from the rat midbrain. The synthetic replicate of urocortin was found to bind with high affinity to type 1 and type 2 CRF receptors and, based upon its anatomic localization within the brain, was proposed to be a natural ligand for the type 2 CRF receptors. Using a genomic library, we have cloned the human counterpart of rat urocortin and localized it to human chromosome 2. Human and rat urocortin share 95% identity within the mature peptide region. Synthetic human urocortin binds with high affinity to CRF receptor types 1, 2 alpha, and 2 beta, stimulates cAMP accumulation from cells stably transfected with these receptors, and acts in vitro to release ACTH from dispersed rat anterior pituitary cells. In addition, the CRF-binding protein binds human urocortin with high affinity and can prevent urocortin-stimulated ACTH secretion in vitro. The inhibitory effect of the CRF-binding protein on human urocortin can be blocked by biologically inactive CRF fragments, such as CRF(9-33).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.