Corticotropin-releasing factor (CRF), a peptide first isolated from mammalian brain, is critical in the regulation of the pituitary-adrenal axis, and in complementary stress-related endocrine, autonomic and behavioural responses. Fish urotensin I and amphibian sauvagine were considered to be homologues of CRF until peptides even more closely related to CRF were identified in these same vertebrate classes. We have characterized another mammalian member of the CRF family and have localized its urotensin-like immunoreactivity to, and cloned related complementary DNAs from, a discrete rat midbrain region. The deduced protein encodes a peptide that we name urocortin, which is related to urotensin (63% sequence identity) and CRF (45% sequence identity). Synthetic urocortin evokes secretion of adrenocorticotropic hormone (ACTH) both in vitro and in vivo and binds and activates transfected type-1 CRF receptors, the subtype expressed by pituitary corticotropes. The coincidence of urotensin-like immunoreactivity with type-2 CRF receptors in brain, and our observation that urocortin is more potent than CRF at binding and activating type-2 CRF receptors, as well as at inducing c-Fos (an index of cellular activation) in regions enriched in type-2 CRF receptors, indicate that this new peptide could be an endogenous ligand for type-2 CRF receptors.
In addition to a nonadecapeptide homologous to the teleost melanin-concentrating hormone (MCH), the amino acid sequence predicted from a rat prepro-MCH (ppMCH) cDNA suggested that at least one (neuropeptide EI, or NEI), and possibly a second (NGE), additional neuropeptide may be encoded by this precursor. Cross-reactivity with epitopes of NEI or NGE can account for reported localization of alpha-MSH, rat CRF, and human GRF in rat dorsolateral hypothalamic neurons. We have used antisera raised against rat MCH and NEI in immunohistochemical studies at the light and electron microscopic levels, along with hybridization histochemical localization of ppMCH mRNA, to define the organization of this system. As expected, ppMCH mRNA is prominently expressed in cells in the lateral hypothalamic area and zona incerta. The MCH and NEI peptides were extensively colocalized in neurons in both of these areas. In addition, smaller cell groups in the olfactory tubercle and pontine tegmentum were also positively hybridized for ppMCH mRNA and immunostained for MCH and NEI. Fibers stained for MCH and NEI were similarly, and very broadly, distributed throughout the central nervous system in patterns that generally conformed with known projection fields of the lateral hypothalamic area and zona incerta. A differential distribution was seen in at least one region, the interanterodorsal nucleus of the thalamus, which contained a prominent terminal field stained for MCH but not NEI. At the electron microscopic level, MCH-stained perikarya displayed a prominent staining associated with the Golgi apparatus; this was not encountered in NEI-stained cells. Both peptides were distributed similarly in terminals in the lateral hypothalamic area and median eminence, with staining associated principally with dense-cored vesicles. The results suggest that ppMCH-derived peptides may serve as neurotransmitters or modulators of prominence in a surprisingly expansive projection field of incerto-hypothalamic neurons. The terminal distributions of this system seem most compatible with functional roles in generalized arousal and sensorimotor integration, processes previously implicated as being subject to modulation by the lateral hypothalamic area.
The corticotropin-releasing factor (CRF) family of neuropeptides includes the mammalian peptides CRF, urocortin, and urocortin II, as well as piscine urotensin I and frog sauvagine. The mammalian peptides signal through two G protein-coupled receptor types to modulate endocrine, autonomic, and behavioral responses to stress, as well as a range of peripheral (cardiovascular, gastrointestinal, and immune) activities. The three previously known ligands are differentially distributed anatomically and have distinct specificities for the two major receptor types. Here we describe the characterization of an additional CRF-related peptide, urocortin III, in the human and mouse. In searching the public human genome databases we found a partial expressed sequence tagged (EST) clone with significant sequence identity to mammalian and fish urocortin-related peptides. By using primers based on the human EST sequence, a full-length human clone was isolated from genomic DNA that encodes a protein that includes a predicted putative 38-aa peptide structurally related to other known family members. With a human probe, we then cloned the mouse ortholog from a genomic library. Human and mouse urocortin III share 90% identity in the 38-aa putative mature peptide. In the peptide coding region, both human and mouse urocortin III are 76% identical to pufferfish urocortin-related peptide and more distantly related to urocortin II, CRF, and urocortin from other mammalian species. Mouse urocortin III mRNA expression is found in areas of the brain including the hypothalamus, amygdala, and brainstem, but is not evident in the cerebellum, pituitary, or cerebral cortex; it is also expressed peripherally in small intestine and skin. Urocortin III is selective for type 2 CRF receptors and thus represents another potential endogenous ligand for these receptors.
Here we describe the cloning and initial characterization of a previously unidentified CRF-related neuropeptide, urocortin II (Ucn II). Searches of the public human genome database identified a region with significant sequence homology to the CRF neuropeptide family. By using homologous primers deduced from the human sequence, a mouse cDNA was isolated from whole brain poly(A) ؉ RNA that encodes a predicted 38-aa peptide, structurally related to the other known mammalian family members, CRF and Ucn. Ucn II binds selectively to the type 2 CRF receptor (CRF-R2), with no appreciable activity on CRF-R1. Transcripts encoding Ucn II are expressed in discrete regions of the rodent central nervous system, including stress-related cell groups in the hypothalamus (paraventricular and arcuate nuclei) and brainstem (locus coeruleus). Central administration of 1-10 g of peptide elicits activational responses (Fos induction) preferentially within a core circuitry subserving autonomic and neuroendocrine regulation, but whose overall pattern does not broadly mimic the CRF-R2 distribution. Behaviorally, central Ucn II attenuates nighttime feeding, with a time course distinct from that seen in response to CRF. In contrast to CRF, however, central Ucn II failed to increase gross motor activity. These findings identify Ucn II as a new member of the CRF family of neuropeptides, which is expressed centrally and binds selectively to CRF-R2. Initial functional studies are consistent with Ucn II involvement in central autonomic and appetitive control, but not in generalized behavioral activation.C RF is a 41-aa peptide best known for its indispensable role in initiating pituitary-adrenal responses to stress, an effect mediated by type 1 CRF receptors (1). In addition, CRF is widely distributed in brain and has been shown repeatedly to participate in the mobilization of complementary autonomic and behavioral adjustments to a variety of threatening circumstances (2, 3). This has fostered the widely held hypothesis that CRF plays an important role in the integration of adaptive responses to stress. Rigorous testing of this idea has been impeded by the fact that a number of the cell groups identified as sites of peptide action in eliciting stress-like autonomic and behavioral responses have been found to be lacking or impoverished in the expression of requisite ligand(s), receptor(s), or both (4, 5). This has kindled the search for additional CRF-related signaling molecules, which currently number two ligands, G protein-coupled receptors derived from two distinct genes (CRF-R1 and CRF-R2), and a binding protein, whose function remains incompletely understood (6, 7).A second mammalian CRF-related neuropeptide, urocortin (Ucn), was discovered recently by our group (8) and shown to be bound with high affinity by both known CRF receptor types, whereas CRF is bound in a highly preferential manner by CRF-R1. Centrally administered Ucn is more potent than CRF in suppressing appetite, but it is less so in generating acute anxiety-like effects and g...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.