In the field of veterinary anatomy, most of the specimens used in practical sessions are perfused with fixatives. Thus, they can be used for a longer time reducing the number of animals for educational purposes. Formalin is the most commonly used fixative, consisting of a 37% formaldehyde solution. However, formaldehyde is a powerful irritant of the eyes and airways and is considered carcinogenic, causing nasopharyngeal cancer in exposed workers and professionals. In the present study, we explored an alternative method to avoid the use of formaldehyde in specimens used for gross anatomy practical sessions. We propose an inexpensive, non-toxic fixative that is available worldwide, such as sea salt. This method consists of a continuous perfusion of saturated salt solution for a period of 6-8 h, enabling drainage of the solution to avoid a weight increase of the specimen, and allowing salt to be retained in the tissue. The method is based on recirculation of the saturated salt solution instead of maceration. Perfused specimens retained their natural consistency and joint mobility, with no blood, resembling a piece of meat from the slaughterhouse. They could be used immediately without a maceration period, or stored in the fridge until use and then kept in a bath of saturated salt solution for future conservation. In the case of the former, no refrigeration was needed. The specimens did not have an irritating or offensive smell, and could be used for long sessions (several hours per day) and stored for long periods. However, the blood vessels used for perfusion determine the results: a less invasive approach (through common carotid arteries) gave good preservation of the musculoskeletal system, whereas more invasive access to cannulate the abdominal aorta and vena cava caudalis was required to achieve better preservation of the viscera. In conclusion, we propose that perfusion followed by immersion in a saturated salt solution is a good alternative method for the preservation of specimens used in the practical teaching of gross veterinary anatomy. It is a very simple and inexpensive technique, and is much healthier for users than traditional formalin. Moreover, specimens can be preserved for prolonged periods, and maintain a similar appearance and consistency to fresh material.
Rabbit Haemorrhagic Disease (RHD) is a lethal infection caused by calicivirus that kills 90% of the infected adult rabbits within 3 days. The calicivirus replicates in the liver and causes a fulminant hepatitis. Most studies on the pathology of RHD have been focused on the fulminant liver disease. This may not be the only mechanism in the pathogenesis of RHD: calicivirus infection may also induce leukopenia in the infected adult rabbits. We show now by flow cytometry analysis that the calicivirus induces an early decrease in B and T cells, in both spleen and liver. The depletion of B and T cells was associated with apoptosis labelled by annexin V. These changes occurred in rabbits before they showed enzymatic evidence of liver damage and persisted after liver transaminase values were very high. We conclude that depletion of lymphocytes caused by the calicivirus infection precedes or attends liver damage. The relative contribution of this lymphocyte depletion for the pathogenesis of the fatal calicivirus infection of rabbits remains to be investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.