[1] Earth-space radio systems operating at frequencies of 10 GHz and above are badly attenuated by rain, cloud, and atmospheric gases. As the frequencies of operational systems increase, it becomes increasingly uneconomic to compensate for the effects of fading through the use of a fixed fade margin, hence the implementation of fade mitigation techniques (FMT). The spatial and temporal variation of rain provides the justification for the use of site diversity as an FMT. Site diversity employs two or more ground stations receiving the same satellite signal with a separation distance such that the sites encounter intense rainfall at different times, and switching to the site experiencing the least fading improves system performance considerably. Measurements of the 20.7 GHz beacon carried as part of the Global Broadcast Service (GBS) payload on the U.S. Department of Defense satellite UFO-9 have been made at three sites: two are located in the South of England ($8 km apart), and the third receiver was located in Scotland. These beacon measurements have produced long term attenuation exceedance and site diversity gain and improvement statistics. This attenuation time series data can simulate the performance of an Earth-space system using site diversity, indicating the optimum method of implementing this FMT. In this paper, unbalanced site diversity is investigated, as this is a more likely scenario than the balanced site diversity modeled by the ITU-R recommendations. This paper also investigates the implementation of site diversity from a commercial context, including costbenefit analysis and technical feasibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.