We consider a class of jumps and diffusion stochastic differential equations which are perturbed by to two parameters: ε (viscosity parameter) and δ (homogenization parameter) both tending to zero. We analyse the problem taking into account the combinatorial effects of the two parameters ε and δ . We prove a Large Deviations Principle estimate for jumps stochastic evolution equation in case that homogenization dominates.
Abstract:We develop homogenization results of a degenerate semilinear PDE with a Wentzell-type boundary condition. The second order operator is also degenerate. Our approach is entirely probabilistic, and extends the result of Diakhaby and Ouknine [3].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.