Context. The inner regions of the envelopes surrounding young protostars are characterised by a complex chemistry, with prebiotic molecules present on the scales where protoplanetary disks eventually may form. The Atacama Large Millimeter/submillimeter Array (ALMA) provides an unprecedented view of these regions zooming in on Solar System scales of nearby protostars and mapping the emission from rare species. Aims. The goal is to introduce a systematic survey, "Protostellar Interferometric Line Survey (PILS)", of the chemical complexity of one of the nearby astrochemical templates, the Class 0 protostellar binary IRAS 16293−2422, using ALMA, to understand the origin of the complex molecules formed in its vicinity. In addition to presenting the overall survey, the analysis in this paper focuses on new results for the prebiotic molecule glycolaldehyde, its isomers and rarer isotopologues and other related molecules.Methods. An unbiased spectral survey of IRAS 16293−2422 covering the full frequency range from 329 to 363 GHz (0.8 mm) has been obtained with ALMA, in addition to a few targeted observations at 3.0 and 1.3 mm. The data consist of full maps of the protostellar binary system with an angular resolution of 0.5 (60 AU diameter), a spectral resolution of 0.2 km s −1 and a sensitivity of 4-5 mJy beam −1 km s −1 -approximately two orders of magnitude better than any previous studies. Results. More than 10,000 features are detected toward one component in the protostellar binary, corresponding to an average line density of approximately one line per 3 km s −1 . Glycolaldehyde, its isomers, methyl formate and acetic acid, and its reduced alcohol, ethylene glycol, are clearly detected and their emission well-modeled with an excitation temperature of 300 K. For ethylene glycol both lowest state conformers, aGg and gGg , are detected, the latter for the first time in the ISM. The abundance of glycolaldehyde is comparable to or slightly larger than that of ethylene glycol. In comparison to the Galactic Center these two species are over-abundant relative to methanol, possibly an indication of formation of the species at low temperatures in CO-rich ices during the infall of the material toward the central protostar. Both 13 C and deuterated isotopologues of glycolaldehyde are detected, also for the first time ever in the ISM. For the deuterated species a D/H ratio of ≈5% is found with no differences between the deuteration in the different functional groups of glycolaldehyde, in contrast to previous estimates for methanol and recent suggestions of significant equilibration between water and -OH functional groups at high temperatures. Measurements of the 13 C-species lead to a 12 C: 13 C ratio of ≈30, lower than the typical ISM value. This low ratio may reflect an enhancement of 13 CO in the ice due to either ion-molecule reactions in the gas before freeze-out or differences in the temperatures where 12 CO and 13 CO ices sublimate. Conclusions. The results reinforce the importance of low temperature grain surfac...
IRAS 04368+2557 is a solar-type (low-mass) protostar embedded in a protostellar core (L1527) in the Taurus molecular cloud, which is only 140 parsecs away from Earth, making it the closest large star-forming region. The protostellar envelope has a flattened shape with a diameter of a thousand astronomical units (1 AU is the distance from Earth to the Sun), and is infalling and rotating. It also has a protostellar disk with a radius of 90 AU (ref. 6), from which a planetary system is expected to form. The interstellar gas, mainly consisting of hydrogen molecules, undergoes a change in density of about three orders of magnitude as it collapses from the envelope into the disk, while being heated from 10 kelvin to over 100 kelvin in the mid-plane, but it has hitherto not been possible to explore changes in chemical composition associated with this collapse. Here we report that the unsaturated hydrocarbon molecule cyclic-C3H2 resides in the infalling rotating envelope, whereas sulphur monoxide (SO) is enhanced in the transition zone at the radius of the centrifugal barrier (100 ± 20 AU), which is the radius at which the kinetic energy of the infalling gas is converted to rotational energy. Such a drastic change in chemistry at the centrifugal barrier was not anticipated, but is probably caused by the discontinuous infalling motion at the centrifugal barrier and local heating processes there.
Context. One of the important questions of astrochemistry is how complex organic molecules, including potential prebiotic species, are formed in the envelopes around embedded protostars. The abundances of minor isotopologues of a molecule, in particular the Dand 13 C-bearing variants, are sensitive to the densities, temperatures and time-scales characteristic of the environment in which they form, and can therefore provide important constraints on the formation routes and conditions of individual species. Aims. The aim of this paper is to systematically survey the deuteration and the 13 C content of a variety of oxygen-bearing complex organic molecules on Solar System scales toward the "B component" of the protostellar binary IRAS 16293-2422. Methods. We use the data from an unbiased molecular line survey of the protostellar binary IRAS 16293−2422 between 329 and 363 GHz from the Atacama Large Millimeter/submillimeter Array (ALMA). The data probe scales of 60 AU (diameter) where most of the organic molecules are expected to have sublimated off dust grains and be present in the gas-phase. The deuterated and 13 Cisotopic species of ketene, acetaldehyde and formic acid, as well as deuterated ethanol, are detected unambiguously for the first time in the interstellar medium. These species are analysed together with the 13 C isotopic species of ethanol, dimethyl ether and methyl formate along with mono-deuterated methanol, dimethyl ether and methyl formate. Results. The complex organic molecules can be divided into two groups with one group, the simpler species, showing a D/H ratio of ≈ 2% and the other, the more complex species, D/H ratios of 4-8%. This division may reflect the formation time of each species in the ices before or during warm-up/infall of material through the protostellar envelope. No significant differences are seen in the deuteration of different functional groups for individual species, possibly a result of the short time-scale for infall through the innermost warm regions where exchange reactions between different species may be taking place. The species show differences in excitation temperatures between 125 K and 300 K. This likely reflects the binding energies/sublimation temperatures of the individual species, in good agreement to what has previously been found for high-mass sources. For dimethyl ether the 12 C/ 13 C ratio is found to be lower by up to a factor of 2 compared to typical ISM values similar to what has previously been inferred for glycolaldehyde. Tentative identifications suggest that the same may apply for 13 C isotopologues of methyl formate and ethanol. If confirmed, this may be a clue to their formation at the late prestellar/early protostellar phases with an enhancement of the available 13 C relative to 12 C related to small differences in binding energies for CO isotopologues or the impact of FUV irradiation by the central protostar.Conclusions. The results point to the importance of ice surface chemistry for the formation of these complex organic molecules at different stag...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.