A b s t r a c t. It is important to know the temperature changes in seeds that have been irradiated with laser light because this could have substantial practical and theoretical importance. Thus, the thermal effects of low intensity laser irradiation on seeds was studied, showing variation of temperature produced by laser light applied during 60 s on two maize seed genotypes, 'Toluqueño' and 'Cacahuazintle': crystalline and floury, respectively, under two different conditions: natural colour and dyed black, evaluating the temperature changes by a thermal camera. The optical absorption spectra and the non-radiative relaxation time of the seeds were obtained using photoacoustic spectroscopy. The results indicate that it is possible to produce temperature changes, detected by an infrared camera, in crystalline and floury seeds when they are irradiated with a laser beam at a 650 nm wavelength and 27.4 mW power. The highest variation of temperature in the seeds was obtained for the black-dyed condition, these variations being 5.56 and 9.28°C for crystalline and floury seeds, respectively. Among the seeds, in the dyed condition, the floury seed had the lower non-radiative relaxation time, the higher optical absorption coefficient and a lower optical penetration length at the laser wavelength (650 nm).
Colloidal suspensions of bimetallic Au/Pd nanoparticles were prepared by simultaneous reduction of the metal ions from their corresponding chloride salts with polymer (PVP) stabilizer. Thermal properties of water containing bimetallic nanoparticles with different nominal compositions (Au/Pd = 12/1, 5/1, 1/1, 1/5) were measured using the mode mismatched dual-beam thermal lens technique to determine the effect of particle composition on the thermal diffusivity of the nanofluids. The characteristic time constant of the transient thermal lens was estimated by fitting the experimental data to the theoretical expression for transient thermal lens. The thermal diffusivity of the nanofluids (water, containing Au/Pd bimetallic nanoparticles) is seen to be strongly dependent on the composition of the particles. The maximum diffusivity was achieved for the nanoparticles with highest Au/Pd molar ratio. A possible mechanism for such high thermal diffusivity of the nanofluids with bimetallic particles is given. UV-Vis spectroscopy, TEM and high-resolution electron microscopy (HREM) techniques were used to characterize the Au/Pd bimetallic nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.