SUMMARYThe stability analysis of a tunnel excavated in a water-saturated frictional soil is investigated in the light of a failure design approach. The soil strength properties being classically formulated in terms of effective stresses, it is first shown how the effect of seepage flow generated by the excavation process, may be accounted for in such an analysis by means of driving body forces derived from the gradient of an excess pore pressures distribution. The latter is obtained as the solution of a hydraulic boundary value problem, in which both water table evolution and soil deformability can be neglected. A variational formulation of this hydraulic problem in terms of filtration velocities is then presented, leading through appropriate numerical treatment, to a search for the minimum without constraints of a quadratic functional (hybrid formulation), which is formulated by a finite element method. Some numerical examples are given, which provide ample evidence of the crucial role played by seepage forces in the tunnel face stability, since the factor of stability may be divided by as much as three. The influence of such parameters as the tunnel relative depth or soil anisotropic permeability is finally discussed, thus offering a first illustration of the various capabilities of this numerical tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.