Breast cancer is a major health problem that affects more than 24% of women in Bangladesh. Furthermore, among low-income countries including Bangladesh, individuals have a high risk for developing breast cancer. This study aimed to identify candidate mitochondrial DNA (mtDNA) biomarkers for breast cancer diagnosis in Bangladeshi women to be used as a preventive approach. We screened the blood samples from 24 breast cancer patients and 20 healthy controls to detect polymorphisms in the D-loop and the ND3- and ND4-coding regions of mtDNA by direct sequencing. Among 14 distinct mutations, 10 polymorphisms were found in the D-loop, 3 were found in the ND3-coding region, and 1 was found in the ND4-coding region. The frequency of two novel polymorphisms in the D-loop, one at position 16290 (T-ins) and the other at position 16293 (A-del), was higher in breast cancer patients than in control subjects (position 16290: odds ratio = 6.011, 95% confidence interval = 1.2482 to 28.8411, P = 0.002; position 16293: odds ratio = 5.6028, 95% confidence interval = 1.4357 to 21.8925, P = 0.010). We also observed one novel mutation in the ND3-coding region at position 10316 (A > G) in 69% of breast cancer patients but not in control subjects. The study suggests that two novel polymorphisms in the D-loop may be candidate biomarkers for breast cancer diagnosis in Bangladeshi women.
Funding information NIGMSMethanol-chloroform based protein precipitation is an essential step in many liquid chromatography-tandem mass spectrometry-based cellular proteomics applications.However, re-solubilization of the total protein precipitate is difficult using regular in-solution digestion protocol. Sodium deoxycholate is reported as an efficient surfactant for re-solubilization of membrane fractions. In this study, we demonstrated an application combining methanol-chloroform based protein precipitations and deoxycholic acid assisted re-solubilization of pellets to evaluate the improvement of protein identifications in mass spectrometry-based bottom-up proteomics. We evaluated the modified method using an equal amount of Raw 264.7 mouse macrophage cell lysate.Detailed in-solution trypsin digestion studies were presented on methanol-chloroform precipitated samples with or without deoxycholic acid treatments and compared with popular sample digestion methods. A mass spectrometric analysis confirmed an 82% increase in protein identification in deoxycholic acid-treated samples compared to other established methods. Furthermore, liquid chromatography-tandem mass spectrometry analysis of an equal amount of proteins from methanol-chloroform precipitated, and methanol-chloroform/deoxycholic acid-treated macrophage cell lysate showed a 14% increase and 27% unique protein identifications. We believe this improved digestion method could be a complementary or alternative method for mammalian cell sample preparations where sodium dodecyl sulfate based lysis buffer is frequently used. K E Y W O R D Sdeoxycholic acid, methanol-chloroform precipitation, proteomics sample preparation, raw macrophages, trypsin digestion Article Related Abbreviations: ABC, ammonium bicarbonate; DCA, deoxycholic acid; FA, formic acid; IAA, iodoacetamide; MeOH-Chl, methanol-chloroform; MeOH-Chl-DCA, methanol-chloroform-deoxicholic acid; MeOH-Chl-NaDCO, methanol-chloroform-Na-deoxicholate; SDC/or NaDCO, sodium deoxycholate.
Farnesylation and geranylgeranylation are the two types of prenyl modification of proteins. Prenylated peptides are highly hydrophobic and their abundances in biological samples are low. In this report, we studied the oxidized prenylated peptides by electrospray ionization mass spectrometry and identified them by collision-induced dissociation (CID) and electron-transfer dissociation (ETD) tandem mass spectrometry. Modified prenyl peptides were generated utilizing strong and low strength oxidizing agents to selectively oxidize and epoxidize cysteine sulfur and prenyl side chain. We selected three peptides with prenyl motifs and synthesized their prenylated versions. The detailed characteristic fragmentations of oxidized and epoxidized farnesylated and geranylgeranylated peptides were studied side by side with two popular fragmentation techniques. CID and ETD mass spectrometry clearly distinguished the modified version of these peptides. ETD mass spectrometry provided sequence information of the highly labile modified prenyl peptides and showed different characteristic fragmentations compared with CID. A detailed fragmentation of modified geranylgeranylated peptides was compared by CID and ETD mass spectrometry for the first time. Graphical Abstract ᅟ.
Toll-like receptor 4 (TLR4) is a receptor on an immune cell that can recognize the invasion of bacteria through their attachment with bacterial lipopolysaccharides (LPS). Hence, LPS is a pro-immune response stimulus. On the other hand, statins are lipid-lowering drugs and can also lower immune cell responses. We used human embryonic kidney (HEK 293) cells engineered to express HA-tagged TLR-4 upon treatment with LPS, statin, and both statin and LPS to understand the effect of pro- and anti-inflammatory responses. We performed a monoclonal antibody (mAb) directed co-immunoprecipitation (CO-IP) of HA-tagged TLR4 and its interacting proteins in the HEK 293 extracted proteins. We utilized an ETD cleavable chemical cross-linker to capture weak and transient interactions with TLR4 protein. We tryptic digested immunoprecipitated and cross-linked proteins on beads, followed by liquid chromatography–mass spectrometry (LC-MS/MS) analysis of the peptides. Thus, we utilized the label-free quantitation technique to measure the relative expression of proteins between treated and untreated samples. We identified 712 proteins across treated and untreated samples and performed protein network analysis using Ingenuity Pathway Analysis (IPA) software to reveal their protein networks. After filtering and evaluating protein expression, we identified macrophage myristoylated alanine-rich C kinase substrate (MARCKSL1) and creatine kinase proteins as a potential part of the inflammatory networks of TLR4. The results assumed that MARCKSL1 and creatine kinase proteins might be associated with a statin-induced anti-inflammatory response due to possible interaction with the TLR4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.