The development of smart composites capable of self-repair on aeronautical structures is still at the planning stage owing to complex issues to overcome. A very important issue to solve concerns the components' stability of the proposed composites which are compromised at the cure temperatures necessary for good performance of the composite. In this work we analyzed the possibility to apply Hoveyda Grubbs' second generation catalyst (HG2) to develop self-healing systems. Our experimental results have shown critical issues in the use of epoxy precursors in conjunction with Hoveyda-Grubbs II metathesis catalyst. However, an appropriate curing cycle of the self-healing mixture permits to overcome the critical issues making possible high temperatures for the curing process without deactivating self-repair activity.
Cooling rate of semicrystalline thermoplastic (PEEK) based composite parts has been assessed by means of a thermal flow model. Cold tool thermoforming was found suitable for thin parts, but the use of a preheated tool is suggested. Cooling rate is critical for automated lay-up; consequently the optimization of this technique requires the use of a complex apparatus, able to provide both heating of the part during lay-up and a control of the cooling rate. Alternatively a modified cooling rate vs. crystallinity behavior of the material must be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.