Stein's method of obtaining distributional approximations is developed in the context of functional approximation by the Wiener process and other Gaussian processes. An appropriate analogue of the one-dimensional Stein equation is derived, and the necessary properties of its solutions are established. The method is applied to the partial sums of stationary sequences and of dissociated arrays, to a process version of the Wald-Wolfowitz theorem and to the empirical distribution function.
Stein's method of obtaining rates of convergence, well known in normal and Poisson approximation, is considered here in the context of approximation by Poisson point processes, rather than their one-dimensional distributions. A general technique is sketched, whereby the basic ingredients necessary for the application of Stein's method may be derived, and this is applied to a simple problem in Poisson point process approximation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.