Genetic selection for increased milk fat percentage leads to increased proportions of short-chain fatty acids in milk fat and decreased proportions of long-chain fatty acids. Milk fat composition is strongly influenced by stage of lactation; proportion of short chains (de novo synthesis) is low initially and increases until at least 8 to 10 wk into lactation. Milk fat composition is changed more by the amount and composition of dietary fat than any other dietary component. Seasonal and regional differences in milk fat composition are measurable, most likely because of local differences in feed supplies. Milk fat composition can be modified readily by changing the feeding regimen. The most significant changes in milk fat quality relate to rheological (melting) properties, which influence numerous aspects of character and quality of manufactured dairy products. Dietary fat fed to change milk fat composition may also influence contents of protein, urea, citrate, and soluble calcium in milk and influence oxidative stability and flavor. It is important for both dairy nutritionists and dairy food chemists to understand the consequences of feeding programs on milk quality.
The objective of this study was to investigate the relationships among birth weight, birth order, or litter size on growth performance, carcass quality, and eating quality of the ultimate pork product. Data were collected from 98 pig litters and, with the addition of recording birth weight and birth order, farrowing and piglet management were according to normal barn practices. In the nursery and during growout, the pigs received the normal feeding program for the barn and, with the addition of individual tattooing, were marketed as per standard procedure. From 24 litters, selected because they had at least 12 pigs born alive and represented a range of birth weights, 4 piglets were chosen (for a total of 96 piglets) and sent to Agriculture and Agri-Food Canada-Lacombe Research Centre (Lacombe, Alberta, Canada) when they reached 120 kg for extensive meat quality and sensory analysis. Individual BW was measured at birth, on the day of weaning, 5 wk after weaning, at nursery exit, at first pull, and at the time of marketing. Litter sizes were divided into 3 categories: small (3 to 10 piglets), medium (11 to 13 piglets), and large (14 to 19 piglets). There were 4 birth-weight quartiles: 0.80 to 1.20, 1.25 to 1.45, 1.50 to 1.70, and 1.75 to 2.50 kg. Increased litter size resulted in reduced mean birth weight (P < 0.05), but had no effect on within litter variability or carcass quality (P > 0.05) when slaughtered at the same endpoint. Lighter birth-weight pigs had reduced BW at weaning, 5 and 7 wk postweaning, and at first pull and had increased days to market (P < 0.05). Birth weight had limited effects on carcass quality, weight of primal cuts, objective quality, and overall palatability of the meat at the same slaughter weight (P > 0.05). In conclusion, increased litter size resulted in decreased mean birth weight but no change in days to market. Lighter birth-weight pigs took longer to reach market. Despite some differences in histological properties, birth weight had limited effects on carcass composition or final eating quality of the pork when slaughtered at the same BW and large litter size resulted in more pigs weaned and marketed compared with the smaller litters. We concluded that based on the conditions of this study, other than increased days to market, there is no reason based on pig performance or pork quality to slow down the goal of the pork industry to increase sow productivity as a means to increase efficiency.
Conjugated linoleic acid (CLA), a mixture of isomers of linoleic acid, has many beneficial effects, including decreased tumor growth in animal cancer models. The cis-9, trans-11 isomer of CLA (CLA9,11) can be formed in the rumen as an intermediate in biohydrogenation of linoleic acid. Recent data, however, indicate that tissue desaturation of trans-fatty acids is an important source of CLA9,11 in milk. Our objective was to determine whether supplementing a high-corn diet with soybean oil (SBO; a source of linoleic acid) would increase concentrations of CLA in ruminal contents and tissue lipids. Four ruminally cannulated steers were utilized in a Latin square design with 28-d periods. A control diet (80% cracked corn, 2.0% corn steep liquor, 8.0% ground corn cobs, and 10% supplement [soybean meal, ground shelled corn, minerals, and vitamins]) was supplemented with 2.5, 5.0, or 7.5% (DM basis) SBO. Supplemental SBO did not affect ruminal pH or concentrations of the major VFA. The proportion and amount (mg FA/g DM ruminal contents) of CLA9,11 were not increased by increasing dietary SBO. However, the proportion and amount of the trans-10, cis-12 CLA isomer (CLA10,12) in ruminal contents increased linearly (P < 0.006) as dietary SBO increased. Trans-18:1 isomers in ruminal contents increased linearly (P < 0.02) as dietary SBO increased. The proportion of CLA10,12 was correlated positively (P < 0.001) with proportions of trans-C 18:1 isomers in ruminal contents. Conversely, CLA9,11 was correlated negatively (P < 0.05) with the proportions of trans-18:1 in ruminal contents. The same high-corn diet, supplemented with 0 or 5% SBO, was fed to 20 Angus-Wagyu heifers for 102 d in a randomized complete block design to determine the effect of added SBO on tissue deposition of CLA. Supplemental SBO did not affect feed intake, gain:feed, or carcass quality. Tissue samples were obtained from the hindquarter, loin, forequarter, liver, large and small intestine, and subcutaneous, mesenteric, and perirenal adipose depots. The concentration of CLA9,11 was greatest in subcutaneous adipose tissue but was not affected in any tissue by SBO. Supplementing high-corn diets with SBO does not increase CLA9,11 concentrations in tissues of fattening heifers. Research is needed to identify regulatory factors for pathways of biohydrogenation that lead to increased concentrations of CLA10,12 in ruminal contents when high-oil, high-concentrate diets are fed.
The fatty acyl profile of phospholipids (PL) determines the fluidity of cell membranes and affects cell function. The degree to which long-chain fatty acid (LCFA) composition of PL and triacylglycerols (TG) in liver and total lipids in adipose tissue can be altered by prepartum nutrition in peripartal dairy cows is unclear. Multiparous Holsteins (n = 25) were assigned to 1 of 4 prepartal diets: 1) CA, the control diet fed to meet 120% of energy requirements; 2) CR, a control diet fed to meet 80% of requirements; 3) S, a diet supplemented with mostly saturated free fatty acids (47% 16:0, 36% 18:0, 14% cis-18:1) and fed to meet 120% of requirements; or 4) U, a diet similar to S except that cows were abomasally infused with soybean oil so that the diet plus infused fat would meet 120% of requirements. Diets were fed for 40 d prepartum; all cows received a lactation diet postpartum. Groups CR and U had lower prepartum intakes of dry matter and net energy, but glucose concentrations in plasma were similar among treatments. Cows fed S, U, or CR had greater nonesterified fatty acids in plasma prepartum, but cows fed U had decreased beta-hydroxybutyrate postpartum. Postpartal concentrations of total lipids and glycogen in liver tissue were similar among treatments. Cows in group U had a greater percentage of 18:2 but less 16:0, 18:0, and 20:4 in plasma total lipids than cows fed S. Treatment U increased 18:2 and 18:3 and decreased 18:1 in subcutaneous adipose tissue at 1 d postpartum. Across diets, percentages of 16:0 and trans-18:1 were increased, and 18:0, 20:3, and 20:5 were decreased, in hepatic PL at d 1 postpartum. Significant treatment x time interactions indicated that treatment U increased 18:2 in hepatic PL at the expense of 18:1, 20:3, 20:4, 22:6, and 24:0 on d 1 postpartum, but changes were normalized by d 65 postpartum. The unsaturation index of hepatic PL was lower at d 1 than at d -45 or 65, which implies that hepatic membrane fluidity decreased around parturition. The unsaturation index at d 1 was greater for cows fed S than those fed CA or U. Percentages of 16:0, 18:1, and 22:0 were increased, and 18:0, 20:3, 20:4, 20:5, 24:0, and 26:0 were decreased, in hepatic TG at d 1. Prepartal feed restriction modestly affected tissue LCFA profiles. The LCFA profile of adipose tissue, liver PL, and liver TG can be altered by dietary LCFA supply prepartum; changes in liver are normalized by 65 d postpartum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.