The breakdown of the N = 20 magic number in the so-called island of inversion around 32 Mg is well established. Recently developed large-scale shell-model calculations suggest a transitional region between normal-and intruder-dominated nuclear ground states, thus modifying the boundary of the island of inversion. In particular, a dramatic change in single-particle structure is predicted between the ground states of 30 Mg and 32 Mg, with the latter consisting nearly purely of 2p-2h N = 20 cross-shell configurations. Single-neutron knockout experiments on 30,32 Mg projectiles have been performed. We report on a first direct observation of intruder configurations in the ground states of these very neutron-rich nuclei. Spectroscopic factors to low-lying negative-parity states in the knockout residues are deduced and compare well with shell-model predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.