We study three-flavor neutrino oscillations in the early universe in the presence of neutrino chemical potentials. We take into account all effects from the background medium, i.e. collisional damping, the refractive effects from charged leptons, and in particular neutrino self-interactions that synchronize the neutrino oscillations. We find that effective flavor equilibrium between all active neutrino species is established well before the big-bang nucleosynthesis (BBN) epoch if the neutrino oscillation parameters are in the range indicated by the atmospheric neutrino data and by the large mixing angle (LMA) MSW solution of the solar neutrino problem. For the other solutions of the solar neutrino problem, partial flavor equilibrium may be achieved if the angle θ 13 is close to the experimental limit tan 2 θ 13 < ∼ 0.065. In the LMA case, the BBN limit on the ν e degeneracy parameter, |ξ ν | < ∼ 0.07, now applies to all flavors. Therefore, a putative extra cosmic radiation contribution from degenerate neutrinos is limited to such low values that it is neither observable in the large-scale structure of the universe nor in the anisotropies of the cosmic microwave background radiation. Existing limits and possible future measurements, for example in KATRIN, of the absolute neutrino mass scale will provide unambiguous information on the cosmic neutrino mass density, essentially free of the uncertainty of the neutrino chemical potentials.
Turbulence may have been produced in the early universe during several kind of non-equilibrium processes. Periods of cosmic turbulence may have left a detectable relic in the form of stochastic backgrounds of gravitational waves. In this paper we derive general expressions for the power spectrum of the expected signal. Extending previous works on the subject, we take into account the effects of a continuous energy injection power and of magnetic fields. Both effects lead to considerable deviations from the Kolmogorov turbulence spectrum. We applied our results to determine the spectrum of gravity waves which may have been produced by neutrino inhomogeneous diffusion and by a first order phase transition. We show that in both cases the expected signal may be in the sensitivity range of LISA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.