The synthesis, characterization, experimental X-ray photoelectron spectra (XPS) and density-functional theory (DFT) investigations on solid solutions of Mo1-xRexS2 (x = 0.05, 0.10, 0.15 and 0.20) are reported herein. It is shown that even at a low concentration of dopant Re atoms, clustering occurs. At an Re concentration of 5% the formation of dimer-like impregnations is observed. An increase in the dopant concentration leads to an increase in the amount of clustered rhenium atoms and to the formation of rhombic clusters. The absence of magnetism within the studied Mo1-xRexS2 solid solutions allowed us to suggest a mechanism for the distribution of rhenium inside molybdenum disulphide through the initial formation of rhenium disulphide and its subsequent spreading.
Hydrothermal reaction of a macrocyclic inorganic POM
cavitand Li17(NH4)21H2[P8W48O184] with [Pt(H2O)2(OH)4] results in coordination of up to
six {Pt(H2O)
x
(OH)4–x
} fragments to the internal surface of the polyoxoanion.
The product
was isolated as K22(NH4)9H3[{Pt(OH)3(H2O)}6P8W48O184]·79H2O (1) and
characterized by multiple techniques in the solid state (SCXRD, XRPD,
XPS, FTIR, and TGA) and in solution (NMR, ESI-MS, and HPLC-ICP-AES).
Electrochemical properties were studied both in solution and as components
of the paste electrode. The complex shows electrocatalytic activity
in water oxidation.
Filling of single-walled carbon nanotubes (SWCNTs) and extraction of the encapsulated species from their cavities are perspective treatments for tuning the functional properties of SWCNT-based materials. Here, we have investigated sulfur-modified SWCNTs synthesized by the ampoule method. The morphology and chemical states of carbon and sulfur were analyzed by transmission electron microscopy, Raman scattering, thermogravimetric analysis, X-ray photoelectron and near-edge X-ray absorption fine structure spectroscopies. Successful encapsulation of sulfur inside SWCNTs cavities was demonstrated. The peculiarities of interactions of SWCNTs with encapsulated and external sulfur species were analyzed in details. In particular, the donor–acceptor interaction between encapsulated sulfur and host SWCNT is experimentally demonstrated. The sulfur-filled SWCNTs were continuously irradiated in situ with polychromatic photon beam of high intensity. Comparison of X-ray spectra of the samples before and after the treatment revealed sulfur transport from the interior to the surface of SWCNTs bundles, in particular extraction of sulfur from the SWCNT cavity. These results show that the moderate heating of filled nanotubes could be used to de-encapsulate the guest species tuning the local composition, and hence, the functional properties of SWCNT-based materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.