The objective of this study was to compare a GnRH-based to an estrogen/progesterone (E2/P4)-based protocol for estrous cycle synchronization and fixed timed artificial insemination (TAI), both designed for synchronization of ovulation and to reduce the period from follicular emergence until ovulation in cows with a synchronized follicular wave. A total of 1,190 lactating Holstein cows (primiparous: n=685 and multiparous: n=505) yielding 26.5 ± 0.30 kg of milk/d at 177 ± 5.02 d in milk were randomly assigned to receive one of the following programs: 5-d Cosynch protocol [d -8: controlled internal drug release (CIDR) + GnRH; d -3: CIDR removal + PGF2α; d -2: PGF2α; d 0: TAI + GnRH] or E2/P4 protocol (d -10: CIDR + estradiol benzoate; d -3: PGF2α; d -2: CIDR removal + estradiol cypionate; d 0: TAI). Rectal temperature and circulating progesterone (P4) were measured on d -3, -2, 0 (TAI), and 7. The estrous cycle was considered to be synchronized when P4 was ≥ 1.0 ng/mL on d 7 in cows that had luteolysis (P4 ≤ 0.4 ng/mL on d 0). To evaluate the effects of heat stress, cows were classified by number of heat stress events: 0, 1, and 2-or-more measurements of elevated body temperature (≥ 39.1 °C). Pregnancy success (pregnancy per artificial insemination, P/AI) was determined at d 32 and 60 after TAI. The cows in the 5-d Cosynch protocol had increased circulating P4 at the time of PGF2α injection (2.66 ± 0.13 vs. 1.66 ± 0.13 ng/mL). The cows in the E2/P4 protocol were more likely to be detected in estrus (62.8 vs. 43.4%) compared with the cows in the 5-d Cosynch protocol, and expression of estrus improved P/AI in both treatments. The cows in the 5-d Cosynch protocol had greater percentage of synchronized estrous cycle (78.2%), compared with cows in the E2/P4 protocol (70.7%). On d 60, the E2/P4 protocol tended to improve P/AI (20.7 vs. 16.7%) and reduced pregnancy loss from 32 to 60 d (11.0 vs. 19.6%), compared with the 5-d Cosynch protocol. In cows withtheir estrous cycle synchronized, the E2/P4 protocol had greater P/AI (25.6 vs. 17.7%) on d 60 and lower pregnancy loss from 32 to 60 d (6.7 vs. 21.7%) compared with cows in the 5-d Cosynch protocol. Follicle diameter affected pregnancy loss from 32 to 60d only in the cows in the 5-d Cosynch protocol, with smaller follicles resulting in greater pregnancy loss. Pregnancy per AI at d 60 was different between protocols in the cows with 2 or more measurements of heat stress (5-d Cosynch=12.2% vs. E2/P4=22.8%), but not in the cows without or with 1 heat stress measurement. In conclusion, the 5-d Cosynch protocol apparently produced better estrous cycle synchronization than the E2/P4 protocol but did not improve P/AI. The potential explanation for these results is that increased E2 concentrations during the periovulatory period can improve pregnancy success and pregnancy maintenance, and this effect appears to be greatest in heat-stressed cows when circulating E2 may be reduced.
Our hypothesis was that increasing the length of an estradiol and progesterone (P4) timed artificial insemination (TAI) protocol would improve pregnancy per artificial insemination (P/AI). Lactating Holstein cows (n=759) yielding 31 ± 0.30 kg of milk/d with a detectable corpus luteum (CL) at d -11 were randomly assigned to receive TAI (d 0) following 1 of 2 treatments: (8d) d -10 = controlled internal drug release (CIDR) and 2.0mg of estradiol benzoate, d -3 = PGF2α(25mg of dinoprost tromethamine), d -2 = CIDR removal and 1.0mg of estradiol cypionate, d 0 = TAI; or (9 d) d -11 = CIDR and estradiol benzoate, d -4 = PGF2α, d -2 CIDR removal and estradiol cypionate, d 0 TAI. Cows were considered to have their estrous cycle synchronized in response to the protocol by the absence of a CL at artificial insemination (d 0) and presence of a CL on d 7. Pregnancy diagnoses were performed on d 32 and 60. The ovulatory follicle diameter at TAI (d 0) did not differ between treatments (14.7 ± 0.39 vs. 15.0 ± 0.40 mm for 8 and 9 d, respectively). The 9 d cows tended to have greater P4 concentrations on d 7 in synchronized cows (3.14 ± 0.18 ng/mL) than the 8d cows (3.05 ± 0.18 ng/mL). Although the P/AI at d 32 [45 (175/385) vs. 43.9% (166/374) for 8d and 9 d, respectively] and 60 [38.1 (150/385) vs. 40.4% (154/374) for 8d and 9 d, respectively] was not different, the 9 d cows had lower pregnancy losses [7.6% (12/166)] than 8d cows [14.7% (25/175)]. The cows in the 9 d program were more likely to be detected in estrus [72.0% (269/374)] compared with 8d cows [62% (240/385)]. Expression of estrus improved synchronization [97.4 (489/501) vs. 81% (202/248)], P4 concentrations at d 7 (3.22 ± 0.16 vs. 2.77 ± 0.17 ng/mL), P/AI at d 32 [51.2 (252/489) vs. 39.4% (81/202)], P/AI at d 60 [46.3 (230/489) vs. 31.1% (66/202)], and decreased pregnancy loss [9.3 (22/252) vs. 19.8% (15/81)] compared with cows that did not show estrus, respectively. Cows not detected in estrus with small (<11 mm) or large follicles (>17 mm) had greater pregnancy loss; however, in cows detected in estrus, no effect of follicle diameter on pregnancy loss was observed. In conclusion, increasing the length of the protocol for TAI increased the percentage of cows detected in estrus and decreased pregnancy loss.
Objectives were to investigate progesterone concentrations and fertility comparing 2 different intervals from PGF(2α) treatment and induced ovulation in an estrogen-based ovulation synchronization protocol for timed artificial insemination (TAI) or timed embryo transfer (TET) in lactating dairy cows. A total of 1,058 lactating Holstein cows [primiparous (n=371) and multiparous (n=687)], yielding 34.1 ± 0.33 kg of milk/d at various days in milk were randomly assigned to receive treatment with PGF(2α) on either d 7 or 8 of the following protocol: d 0: 2mg of estradiol benzoate + controlled internal drug release device; d 8: controlled internal drug release device removal + 1.0mg of estradiol cypionate; d 10: TAI or d 17: TET. Only cows with a corpus luteum at d 17 received an embryo and all cows received GnRH at TET. Pregnancy diagnoses were performed by detection (transrectal ultrasonography) of an embryo on d 28 or a fetus on d 60. Fertility [pregnancy per artificial insemination (P/AI) or pregnancy per embryo transfer (P/ET)] was affected by breeding technique (AI vs. ET) and time of PGF(2α) treatment (d 7 vs. 8) at the 28-d pregnancy diagnosis for TAI [32.9% (238) vs. 20.6% (168)] and TET cows [47% (243) vs. 40.7% (244)] and at the 60-d pregnancy diagnosis for TAI [30% (238) vs. 19.2% (168)] and TET cows [37.9% (243) vs. 33.5% (244)]. The progesterone (P4) concentration at d 10 altered fertility in TAI cows, with higher P/AI in cows with P4 concentration <0.1 ng/mL compared with cows with P4 concentration ≥ 0.1 ng/mL, and in ET cows, with higher P/ET in cows with P4 concentration <0.22 ng/mL compared with cows with P4 concentration ≥ 0.22 ng/mL. Prostaglandin F(2α) treatment at d 7 increased the percentage of cows with P4 <0.1 ng/mL on d 10 [39.4 (85) vs. 23.2 (54)]. Reducing the period between PGF(2α) and TAI from 72 to 48 h in dairy cows resulted in a clear reduction in fertility in cows bred by TAI and a subtle negative effect in cows that received TET. The earlier PGF(2α) treatment benefits are most likely mediated through gamete transport, fertilization, or early embryo development and a more subtle effect of earlier PGF(2α) treatment that may be mediated through changes in the uterine or hormonal environment that manifests itself after ET on d 7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.