Brain fatty acid incorporation into phospholipids can be measured in vivo following intravenous injection of fatty acid tracer. However, to calculate a cerebral incorporation rate, knowledge is required of tracer specific activity in the final brain precursor pool. To determine this for one tracer, unesterified [3H]arachidonate was infused intravenously in pentobarbital‐anesthetized rats to maintain constant plasma specific activity for 1–10 min. At the end of infusion, animals were killed by microwave irradiation and analyzed for tracer specific activity and concentration in brain phospholipid, neutral lipid, and lipid precursor, i.e., unesterified arachidonate and arachidonoyl‐CoA, pools. Tracer specific activity in brain unesterified arachidonate and arachidonoyl‐CoA rose quickly (t1/2 < 1 min) to steady‐state values that averaged <5% of plasma specific activity. Incorporation was rapid, as >85% of brain tracer was present in phospholipids at 1 min of infusion. The results demonstrate that unesterified arachidonate is rapidly taken up and incorporated in brain but that brain phospholipid precursor pools fail to equilibrate with plasma in short experiments. Low brain precursor specific activity may result from (a) dilution of label with unlabeled arachidonate from alternate sources or (b) precursor pool compartmentalization. The results suggest that arachidonate turnover in brain phospholipids is more rapid than previously assumed.
Previous estimates have placed the energy requirements of total phospholipid metabolism in mammalian brain at 2% or less of total ATP consumption. This low estimate was consistent with the very long half-lives (up to days) reported for fatty acids esterified within phospholipids. However, using an approach featuring analysis of brain acyl-CoA, which takes into account dilution of the precursor acyl-CoA pool by recycling of fatty acids, we reported that half-lives of fatty acids in phospholipids are some 100 times shorter (min-h) than previously thought. Based on these new estimates of short half-lives, palmitic acid and arachidonic acid were used as prototype fatty acids to calculate energy consumption by fatty acid recycling at the sn-1 and sn-2 positions of brain phospholipids. We calculated that the energy requirements for reacylation of fatty acids into lysophospholipids are 5% of net brain ATP consumption. We also calculated ATP requirements for maintaining asymmetry of the aminophospholipids, phosphatidylserine and phosphatidylethanolamine across brain membrane bilayers. This asymmetry is maintained by a translocase at a stoichiometry of 1 mol of ATP per mol of phospholipid transferred in either direction across the membrane. The energy cost of maintaining membrane bilayer asymmetry of aminophospholipids at steady-state was calculated to be 8% of total ATP consumed. Taken together, deacylation-reacylation and maintenance of membrane asymmetry of phosphatidylserine and phosphatidylethanolamine require about 13% of ATP consumed by brain as a whole. This is a lower limit for energy consumption by processes involving phospholipids, as other processes, including phosphorylation of polyphosphoinositides and de novo phospholipid biosynthesis, were not considered.
In this study, the 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine content of human platelets was determined. The distribution of arachidonate among the 1,2-diacyl, 1-O-alkyl-2-acyl, and 1-O-alk-l'-enyl-2-acyl classes of choline- and ethanolamine-containing phosphoglycerides was also assessed. The major platelet phospholipids were choline-containing phosphoglycerides (38%), ethanolamine-containing phosphoglycerides (25%) and sphingomyelin (18%), with smaller amounts of phosphatidylserine (11%) and phosphatidylinositol (4%). In addition to the diacyl class, the choline-linked fraction was found to contain both 1-O-alkyl-2-acyl (10%) and 1-O-alk-l'-enyl-2-acyl (9%) species. The ethanolamine-linked fraction, on the other hand, had an elevated level of the 1-O-alk-1'-enyl-2-acyl (60%) species and a small amount of the 1-O-alkyl-2-acyl component (4%). The major fatty acyl residues found in all classes of the choline and ethanolamine phospholipids were 16:0, 18:0, 18:1 (delta 9), 18:2(n-6) and 20:4(n-6). The 1-O-alkyl and 1-O-alk-1'-enyl fraction of the ethanolamine-linked phospholipids also contained substantial amounts of 22:5(n-3) and 22:6(n-3) acyl chains. Arachidonate comprised 44% of the acyl residues in the sn-2 position of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine. Corresponding values for the diacyl and 1-O-alk-1'-enyl-2-acyl species were 23% and 25%, respectively, based on all 20:4(n-6) being linked to the sn-2 position of all classes.(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.