Systematic Regression Testing is essential for maintaining software quality, but the cost of regression testing is high. Test case prioritization (TCP) is a widely used approach to reduce this cost. Many researchers have proposed regression test case prioritization techniques, and clustering is one of the popular methods for prioritization. The task of selecting appropriate test cases and identifying faulty functions involves ambiguities and uncertainties. To alleviate the issue, in this paper, two fuzzy-based clustering techniques are proposed for TCP using newly derived similarity coefficient and dominancy measure. Proposed techniques adopt grouping technology for clustering and the Weighted Arithmetic Sum Product Assessment (WASPAS) method for ranking. Initially, test cases are clustered using similarity//dominancy measures, which are later prioritized using the WASPAS method under both inter- and intra-perspectives. The proposed algorithms are evaluated using real-time data obtained from Software-artifact Infrastructure Repository (SIR). On evaluation, it is inferred that the proposed algorithms increase the likelihood of selecting more relevant test cases when compared to the recent state-of-the-art techniques. Finally, the strengths of the proposed algorithms are discussed in comparison with state-of-the-art techniques.
This paper focuses on an exciting and essential problem in software companies. The software life cycle includes testing software, which is often time-consuming, and is a critical phase in the software development process. To reduce time spent on testing and to maintain software quality, the idea of a systematic selection of test cases is needed. Attracted by the claim, researchers presented test case prioritization (TCP) by applying the concepts of multi-criteria decision-making (MCDM). However, the literature on TCP suffers from the following issues: (i) difficulty in properly handling uncertainty; (ii) systematic evaluation of criteria by understanding the hesitation of experts; and (iii) rational prioritization of test cases by considering the nature of criteria. Motivated by these issues, an integrated approach is put forward that could circumvent the problem in this paper. The main aim of this research is to develop a decision model with integrated methods for TCP. The core importance of the proposed model is to (i) provide a systematic/methodical decision on TCP with a reduction in testing time and cost; (ii) help software personnel choose an apt test case from the suite for testing software; (iii) reduce human bias by mitigating intervention of personnel in the decision process. To this end, probabilistic linguistic information (PLI) is adopted as the preference structure that could flexibly handle uncertainty by associating occurrence probability to each linguistic term. Furthermore, an attitude-based entropy measure is presented for criteria weight calculation, and finally, the EDAS ranking method is extended to PLI for TCP. An empirical study of TCP in a software company is presented to certify the integrated approach’s effectiveness. The strengths and weaknesses of the introduced approach are conferred by comparing it with the relevant methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.