After the accident at the Fukushima Daiichi NPP, the attention of the scientific community is riveted on how the consequences are being eliminated. Removing corium – a lava-like resolidified mixture of nuclear fuel with other structural elements of the reactor – remains the most difficult task, the solution of which can take several decades. It is extremely important to exclude the occurrence of any emergency processes during the removal of corium. The purpose of this work was to solve a coordinated hydrodynamic and neutronic problem characterized by a large number of randomly oriented and irregularly located corium particles in water as part of the development of a benchmark for this class of problems. Monte Carlo-based precision codes were used to perform a neutronic analysis. The positions of corium particles were determined from the numerical simulation results. The analysis results obtained using the codes involved showed good agreement for all the states considered. It was shown that the modern neutronic codes based on the Monte Carlo method successfully cope with the geometric formation and solution of the problem with a nontrivial distribution of corium particles in water. The results of the study can be used to justify the safety of corium handling procedures, including its extraction from a damaged power unit.
This work aimed at generating homogenized group constants using the Serpent code and then using the CriMR diffusion code to model the large SFR OECD 3600 MWth MOX core. The results were compared with a full core reference Monte Carlo solution by Serpent. Reactivity feedback parameters were also considered. Generating the group constants from separate fuel assemblies allows for simultaneously carrying out calculations and then using the results as input in diffusion codes rather than waiting so long for a 3D full core Monte Carlo calculation to be completed. From the results of the integral parameters we see a close agreement in the calculation codes. The differences can be attributed to the errors that could arise from generating the constants from individual sub-assemblies. The differences in the underlying physics and approximations used in development of the codes could also be a factor. Another way the errors could be reduced is by checking to see that the sub-assembly configurations used in the non-multiplying zones are as close as possible to the real layout in a full 3D core.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.