Summary1. Bumble bees play a vital role in the pollination of many crops and wild¯owers, and plans for their conservation require a knowledge of the dynamics and spatial scale of their foraging¯ights, which are, at present, poorly understood. 2. We investigated the foraging range and constancy of two colonies of bumble bees Bombus terrestris L. on a mixed arable farm using harmonic radar, which has a unique capability to record the trajectories of insects¯ying at low altitude in the ®eld. 3. Foraging bees were ®tted with lightweight radar transponders and tracked as they¯ew to and from the nest to forage. The resulting tracks gave information on length, direction and straightness of foraging routes. Superimposition onto a map of the foraging landscape allowed interpretation of the bees' destinations in relation to the spatial distribution of forage. 4. Outward tracks had a mean length of 275´3 P 18´5 m (n = 65) and a range of 70±631 m, and were often to forage destinations beyond the nearest available forage. Most bees were constant to compass bearing and destination over successive trips, although one bee was tracked apparently switching between forage patches. Both outward and return tracks had a mean straightness ratio of 0´93 P 0´01 (n = 99). The bees' ground speeds ranged from 3´0 m s ±1 to 15´7 m s ±1 (n = 100) in a variety of wind conditions. 5. The results support the hypothesis that bumble bees do not necessarily forage close to their nest, and illustrate that studies on a landscape scale are required if we are to evaluate bee foraging ranges fully with respect to resource availability. Such evaluations are required to underpin assessments of gene¯ow in bee-pollinated crops and wild¯owers. They are also required when making decisions about the management of bees as pollinators and the conservation of bee and plant biodiversity.
Many insects undertake long-range seasonal migrations to exploit temporary breeding sites hundreds or thousands of kilometers apart, but the behavioral adaptations that facilitate these movements remain largely unknown. Using entomological radar, we showed that the ability to select seasonally favorable, high-altitude winds is widespread in large day- and night-flying migrants and that insects adopt optimal flight headings that partially correct for crosswind drift, thus maximizing distances traveled. Trajectory analyses show that these behaviors increase migration distances by 40% and decrease the degree of drift from seasonally optimal directions. These flight behaviors match the sophistication of those seen in migrant birds and help explain how high-flying insects migrate successfully between seasonal habitats.
By using harmonic radar, we report the complete flight paths of displaced bees. Test bees forage at a feeder or are recruited by a waggle dance indicating the feeder. The flights are recorded after the bees are captured when leaving the hive or the feeder and are released at an unexpected release site. A sequence of behavioral routines become apparent: (i ) initial straight flights in which they fly the course that they were on when captured (foraging bees) or that they learned during dance communication (recruited bees); (ii ) slow search flights with frequent changes of direction in which they attempt to ''get their bearings''; and (iii ) straight and rapid flights directed either to the hive or first to the feeding station and then to the hive. These straight homing flights start at locations all around the hive and at distances far out of the visual catchment area around the hive or the feeding station. Two essential criteria of a map-like spatial memory are met by these results: bees can set course at any arbitrary location in their familiar area, and they can choose between at least two goals. This finding suggests a rich, map-like organization of spatial memory in navigating honey bees.dance ͉ communication ͉ localization in navigation ͉ vector orientation ͉ vector map
Dispersal is a key life-history trait, especially in species inhabiting fragmented landscapes. The process of dispersal is affected by a suite of morphological, physiological, and behavioral traits, all of which have a more or less complex genetic basis and are affected by the prevailing environmental conditions. To be able to identify genetic and phenotypic effects on dispersal, movements have to be recorded over relevant spatial and temporal scales. We used harmonic radar to track free-flying Glanville fritillary butterflies (Melitaea cinxia) released in the field and reconstructed their flight tracks for several hours. Flight track lengths for individual butterflies ranged from tens of meters to several kilometers. Butterflies were most mobile at midday and in intermediate temperatures. Flight metabolic rate (MR), measured prior to the tracking, explained variation in mobility at all scales studied. One-third of the variation in the distance moved in one hour could be attributed to variation in flight MR. Heterozygous individuals at a single nucleotide polymorphism in the phosphoglucose isomerase (Pgi) gene moved longer distances in the morning and at lower ambient temperatures than homozygous individuals. A similar genotype x temperature interaction was found to affect the metabolic rate. Our results establish connections from molecular variation in a single gene to flight physiology and movement behavior at the landscape level. These results indicate a fitness advantage to the heterozygous genotype in low temperatures and suggest a mechanism by which varying environmental conditions maintain genetic polymorphism in populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.