In this paper we reported nano-crystalline cobalt ferrite powders were synthesized using co-precipitation method at 600 °C, 700 °C and 800 °C. The structural, morphological and magnetic properties of the powders were investigated by x-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Infrared spectral analysis data between 200 and 1000 cm-1 defined the intrinsic cation vibrations of the characteristic spinel structure system. The saturation magnetization (Ms) and coercivity (Hc) of the CoFe2O4 were found to be in the range of 94-33 emu/g, which is still in the range of hard ferrite. The observed variation in saturation magnetization, coercivity and remanence magnetization as a function of increasing the temperature and grain size of samples. From this point of view, nano-scale size of nanoparticles makes them efficient for using in borehole stability maintaining for enhancing oil and gas recovery efficiency improvement. The large value of magnetic pressure (-2.95699) are expected to be useful in oil recovery applications. It has also been found that the choice of nanoparticles for application in oil recovery depends on nature, magnetic and electric properties of the reservoir rock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.