A simple mathematical model capable of reproducing formation of small-scale spatial structures in prey–predator system is presented. The migration activity of predators is assumed to be determined by the degree of their satiation. The hungrier individual predators migrate more frequently, randomly changing their spatial position. It has previously been demonstrated that such an individual response to local feeding conditions leads to prey–taxis and emergence of complex spatiotemporal dynamics at population level, including periodic, quasi-periodic and chaotic regimes. The proposed taxis–diffusion–reaction model is applied to describe the trophic interactions in system consisting of benthic diatom microalgae and harpacticoid copepods. The analytical condition for the oscillatory instability of the homogeneous stationary state of species coexistence is given. The model parameters are identified on the basis of field observation data and knowledge on the species ecology in order to explain micro-scale spatial patterns of these organisms, which still remain obscure, and to reproduce in numerical simulations characteristic size and the expected lifetime of density patches.
В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищникжертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели-плотности популяций хищников и жертв, скорость хищников-связаны между собой системой трех уравнений типа «реакция-диффузияадвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров-общего количества хищников и их коэффициента таксисного ускорения. Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге-Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье. Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв. Ключевые слова: популяционные волны, бифуркации, многочастотные режимы, хаос Работа выполнена при поддержке РФФИ, грант № 18-01-00453 А.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.