Purpose
– The purpose of this paper is to quantify the corrosion damage evolution that has occurred on the aircraft aluminum alloy 2024 after the exposure to Exfoliation Corrosion Test (EXCO) solution. Moreover, the effect of the evolving corrosion damage on the materials mechanical properties has been assessed. The relevance of the corrosion damage induced by the exposure to the laboratory EXCO for linking it to the damage developed after the exposure of the material on several outdoor corrosive environments or in service is discussed.
Design/methodology/approach
– To induce corrosion damage the EXCO has been used. For the quantification of corrosion damage the metallographic features considered have been pit depth, diameter, pitting density and pit shape. The effect of the evolving corrosion damage on the materials mechanical properties has been assessed by means of tensile tests on pre corroded specimens.
Findings
– The results have shown that corrosion damage starts from pitting and evolves to exfoliation, after the development of intergranular corrosion. This evolution is expressed by the increase of the depth of attack, as well as through the significant growth of the diameter of the damaged areas. The results of the tensile tests performed on pre corroded material made an appreciable decrease of the materials tensile properties evident. The decrease of the tensile ductility may become dramatic and increases on severity with increasing corrosion exposure time. SEM fractography revealed a quasi-cleavage zone beneath the depth of corrosion attack.
Originality/value
– The results underline the impact of corrosion damage on the mechanical behavior of the aluminum alloy 2024 T3 and demonstrate the need for further investigation of the corrosion effect on the structural integrity of the material. This work provides an experimental database concerning the quantification of corrosion damage evolution and the loss of material properties due to corrosion.
Rolling contact fatigue (RCF) is one of the most important failure mechanisms in rails with significant cost‐ and safety‐related implications on the operation of railway systems. In this work, a metallurgical analysis of RCF crack initiation and propagation, including geometrical characteristics of RCF cracks – length, depth from surface, angle of propagation and spacing between cracks, is presented. The role of proeutectoid ferrite in crack initiation has been studied. Analysis of the fracture surface of an RCF crack revealed a ductile initiation zone followed by a quasi‐cleavage crack propagation. Iron oxide formed in the interior of all cracks in rails exposed to stagnant water with implications to crack propagation rate because of crack closure effects. Sequential sectioning parallel to the rolling surface revealed that RCF cracks possess convoluted surfaces. The crack trace expands with depth from the rolling surface. Subsurface crack initiation has also been documented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.