Geodesic balls in a simply connected space forms Sn, Rn or Hn are distinguished manifolds for comparison in bounded Riemannian geometry. In this paper we show that they have the maximum possible boundary volume among Miao–Tam critical metrics with connected boundary provided that the boundary of the manifold has a lower bound for the Ricci curvature. In the same spirit we also extend a rigidity theorem due to Boucher et al. and Shen to n‐dimensional static metrics with positive constant scalar curvature, which gives us a partial answer to the Cosmic no‐hair conjecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.