The last decade witnessed significant progress in angle-resolved photoemission spectroscopy (ARPES) and its applications. Today, ARPES experiments with 2 meV energy resolution and 0.2 • angular resolution are a reality even for photoemission on solid systems. These technological advances and the improved sample quality have enabled ARPES to emerge as a leading tool in the investigation of the high-Tc superconductors. This paper reviews the most recent ARPES results on the cuprate superconductors and their insulating parent and sister compounds, with the purpose of providing an updated summary of the extensive literature in this field. The low energy excitations are discussed with emphasis on some of the most relevant issues, such as the Fermi surface and remnant Fermi surface, the superconducting gap, the pseudogap and d-wave-like dispersion, evidence of electronic inhomogeneity and nano-scale phase separation, the emergence of coherent quasiparticles through the superconducting transition, and many-body effects in the one-particle spectral function due to the interaction of the charge with magnetic and/or lattice degrees of freedom. Given the dynamic nature of the field, we chose to focus mainly on reviewing the experimental data, as on the experimental side a general consensus has been reached whereas interpretations and related theoretical models can vary significantly. The first part of the paper introduces photoemission spectroscopy in the context of strongly interacting systems, along with an update on the state-of-the-art instrumentation. The second part provides a brief overview of the scientific issues relevant to the investigation of the low energy electronic structure by ARPES. The rest of the paper is devoted to the review of experimental results from the cuprates and the discussion is organized along conceptual lines: normal-state electronic structure, interlayer interaction, superconducting gap, coherent superconducting peak, pseudogap, electron self energy and collective modes. Within each topic, ARPES data from the various copper oxides are presented.
An understanding of the nature of superconductivity in cuprates has been hindered by the apparent diversity of intertwining electronic orders in these materials. Here we combine resonant X-ray scattering (REXS), scanning-tunneling microscopy (STM), and angle-resolved photoemission spectroscopy (ARPES) to observe a charge order that appears consistently in surface and bulk, as well as momentum and real space, with the Bi2Sr2−xLaxCuO 6+δ cuprate family. The observed wavevector rules out simple antinodal nesting in the single particle limit, but matches well with a phenomenological model of a many-body instability of the Fermi arcs. Combined with earlier observations in other cuprate families, these findings suggest the existence of a generic charge-ordered state in underdoped cuprates, and uncover its connection to the pseudogap regime. PACS numbers:Since the discovery of cuprate high-temperature superconductors, several unconventional phenomena have been observed in the region of the phase diagram located between the strongly localized Mott insulator at zero doping and the itinerant Fermi-liquid state that emerges beyond optimal doping [1][2][3][4][5][6][7][8][9][10][11][12][13][14][15][16][17][18][19][20]. The so-called 'pseudogap' opens at the temperature T * and obliterates the Fermi surface at the antinodes (AN) of the d-wave superconducting gap function, leaving behind disconnected "Fermi arcs" centered around the nodes. In addition, charge order has been observed on the surface of Bi-and Clbased compounds [4][5][6][7][8], in the bulk of La-based compounds [9][10][11], and most recently in YBa 2 Cu 3 O 6+δ (YBCO) [17][18][19][20], indicating this might be the leading instability in underdoped cuprates. The similarity between the observed charge ordering wavevector and the antinodal nesting vector of the hightemperature Fermi surface has prompted suggestions that a conventional Peierls-like charge-density-wave (CDW) might be responsible for the opening of the pseudogap [7,8,12,19]. We use complementary bulk/surface techniques to examine the validity of this scenario, and explore the connection between charge ordering and fermiology.By applying a suite of complementary tools to a single cuprate material, Bi 2 Sr 2−x La x CuO 6+δ (Bi2201), we reveal that the charge order in this system emerges just below T * , and that its wavevector corresponds to the Fermi arc tips rather than the antinodal nesting vector. We quantify the Fermi surface using ARPES, and we look for charge modulations along the Cu-O bond directions in both real-and reciprocalspace, using STM and REXS. The single-layer Bi2201 is well suited to this purpose owing to: (i) its two-dimensionality and high degree of crystallinity [22,23], and (ii) the possibility of probing the temperature evolution across T * , which is bettercharacterized [15,16] and more accessible than in bilayer sys-
One of the keys to the high-temperature superconductivity puzzle is the identification of the energy scales associated with the emergence of a coherent condensate of superconducting electron pairs. These might provide a measure of the pairing strength and of the coherence of the superfluid, and ultimately reveal the nature of the elusive pairing mechanism in the superconducting cuprates. To this end, a great deal of effort has been devoted to investigating the connection between the superconducting transition temperature Tc and the normal-state pseudogap crossover temperature T * . Here we present a review of a large body of experimental data that suggests a coexisting two-gap scenario, i.e. superconducting gap and pseudogap, over the whole superconducting dome.
We examine the effect on the superconducting transition temperature (Tc) of chemical inhomogeneities in Bi2Sr2CuO 6+δ and Bi2Sr2CaCu2O 8+δ single crystals. Cation disorder at the Sr crystallographic site is inherent in these materials and strongly affects the value of Tc. Partial substitution of Sr by Ln (Ln = La, Pr, Nd, Sm, Eu, Gd, and Bi) in Bi2Sr1.6Ln0.4CuO 6+δ results in a monotonic decrease of Tc with increasing ionic radius mismatch. By minimizing Sr site disorder at the expense of Ca site disorder, we demonstrate that the Tc of Bi2Sr2CaCu2O 8+δ can be increased to 96 K. Based on these results we discuss the effects of chemical inhomogeneity in other bulk high-temperature superconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.