The current state of the art of opticat fiber sensors is reviewed. The principles of operation are detaited and the various types of fiber sensors are outlined. Achievable performance and timitations are discussed and a description of technology used to fabricate the sensor is presented. The characteristics of acoustic, magnetic, gyro, laser diode, and other sensors are described. Trends in the development of this sensor technology and expected application areas are briefly outlined.
An overview of fibre-optic interferometry based sensing is given, particularly as it applies to high-performance sensing applications. The operation of a fibre-optic interferometer as a sensor is reviewed. The sensitivity limitations of a fibre-optic sensor are derived, and the system impact of multiplexing many sensors together is explored. A review of the development of the fibre-optic acoustic transducer is presented, as well as system applications and future trends in fibre-optic interferometric sensing.
A method of homodyne demodulation using a phase generated carrier is described and experimentally demonstrated. The method has a large dynamic range, good linearity, and is capable of detecting phase shifts in the microradian range. The detection scheme obviates the phase tracker resetting problem encountered in active homodyne detection schemes. Two methods of producing the carrier are presented, one employing a piezoelectric stretcher, the other using current induced frequency modulation of the diode laser source. These two methods are compared. The origins of the noise Limiting the system are briefly discussed.
The feasibility of maintaining a single-mode optical fiber interferometer in quadrature is demonstrated using a servo driven piezoelectrically stretched coiled fiber. The controller has a range of ~10(-5)-1000 rad with a stress voltage coefficient of ~27pi rad/V.
A method of homodyne demodulation using a phase generated carrier is described and experimentally demonstrated. The method has a large dynamic range, good linearity, and is capable of detecting phase shifts in the microradian range. The detection scheme obviates the phase tracker resetting problem encountered in active homodyne detection schemes. Two methods of producing the carrier are presented, one employing a piezoelectric stretcher, the other using current induced frequency modulation of the diode laser source. These two methods are compared. The origins of the noise Limiting the system are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.