This paper attempts to determine the suitability of tilting technology as applied to metro systems, taking the Tyne and Wear Metro as its base case study. This is done through designing and implementing of several tests which show the current metro situation and reveals possible impacts on ride comfort and speed, in case tilting technology has been implemented. The paper provides brief background literature review on tilting technology, its different designs and types, control systems, customer satisfaction and history on the Tyne and Wear metro system. Ride comfort evaluation methods, testing of the Metro fleet comfort levels and simulation modelling through the use of OpenTrack simulator software are also introduced. Results and findings include test accuracy and validations and suggest that although tilting technology could be beneficial with respect to speed (minimal improvements) and comfort, implementing it to the Tyne and Wear metro would be an unwise decision owing to the immense amount of upgrades that would be needed on both the network and the metro car fleet. Therefore, recommendations are subsequently made on alternative systems which could achieve or surpass the levels of comfort achievable by tilting technology without the need for an outright overhaul of lines and trains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.