The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb + and 87 Rb + ions with well-known mass values show that relative uncertainties ∆m/m ≤ 7 · 10 −10 are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and of more exotic isotopes as well as ultra-high precision measurements required, e.g., for neutrino physics. In addition, a new phase-dependent cleaning method based on the differences in the accumulated cyclotron motion phases has been demonstrated with short-lived 127 In + and 127m In + ions.
Published version Kirsebom, O. S.; Hukkanen, M.; Kankainen, A.; Trzaska, W. H.; Strömberg, D. F.; Martínez-Pinedo, G.; Andersen, K.; Bodewits, E.; Brown, B. A.; Canete, L.; Cederkäll, J.; Enqvist, T.; Eronen, T.; Fynbo, H. O. U.; Geldhof, S.; de Groote, R., Jenkins, D. G.; Jokinen, A.; Joshi, P.; Khanam, A.; Kostensalo, J.; Kuusiniemi, P.; Langanke, K.; Moore, I.; Munch, M.; Nesterenko, D. A.; Ovejas, J. D.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; Riisager, K.; de Roubin, A.; Schotanus, P.; Srivastava, P. C.; Suhonen, J.; Swartz, J. A.; Tengblad, O.; Vilen, M.; Vínals, S.; Äystö, J. Kirsebom, O. S.; Hukkanen, M.; Kankainen, A.; Trzaska, W. H.; Strömberg, D. F.; Martínez-Pinedo, G.; Andersen, K.; Bodewits, E.; Brown, B. A.; Canete, L.; Cederkäll, J.; Enqvist, T.; Eronen, T. et al. (2019). Measurement of the 2+→0+ ground-state transition in the β decay of 20F.We report the first detection of the second-forbidden, nonunique, 2 + → 0 + , ground-state transition in the β decay of 20 F. A low-energy, mass-separated 20 F + beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plasticscintillator detector. The β-decay branching ratio inferred from the measurement is b β = [0.41 ± 0.08(stat) ± 0.07(sys)] × 10 −5 corresponding to log f t = 10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars that develop degenerate oxygen-neon cores. Using the new experimental data, we argue that the astrophysical electron-capture rate on 20 Ne is now known to within better than 25% at the relevant temperatures and densities.
Excited levels in 87 Br, populated in β decay of 87 Se, have been studied by means of γ-ray spectroscopy using an array of broad energy Ge detectors. 87 Se nuclei were produced by irradiating a natural Th target with 25-MeV protons. Fission products were extracted from the target chamber using the IGISOL technique, then separated on a dipole magnet and Penning trap (JYFLTRAP) setup. The scheme of excited levels of 87 Br has been significantly extended. 114 new transitions and 51 new levels were established. β feedings and log(f t) values of levels were determined. The upper limit for β feeding to the ground state of 87 Br was determined to be 23(5)%. Ground state spin and parity 5/2 − was confirmed, as suggested by previous studies. We also confirm the low-energy excited state at 6.02 keV. The ground state and two lowest excited states in 87 Br were interpreted as the (π f 5/2) 3 j, j−1, j−2 triplet produced by the so-called anomalous coupling. The 333.61-and 699.26-keV levels were interpreted as π p 3/2 and π p 1/2 single-particle excitations. The 9/2 + level reported previously as corresponding to the π g 9/2 single-particle excitation is proposed to be an isomer with half-life 20 ns. Large-scale shell-model calculations performed in this work are in good agreement with experimental results.
An extension of the atomic mass surface in the region A ≈ 100 was performed via measurements of the 100−102 Sr and 100−102 Rb masses with the ion-trap spectrometer ISOLTRAP at CERN-ISOLDE, including the first direct mass determination of 102 Sr and 101,102 Rb. These measurements confirm the continuation of the region of deformation with the increase of neutron number, at least as far as N = 65. To interpret the deformation in the strontium isotopic chain and to determine whether an onset of deformation is present in heavier krypton isotopes, a comparison is made between the experimental values and mean-field and beyond mean-field results available in the literature. To complete this comparison Hartree-Fock-Bogoliubov calculations for even and odd isotopes were performed, illustrating the competition of nuclear shapes in the region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.