Electron acceleration by ultrahigh intensity lasers is studied by means of two-dimensional planar particle-in-cell simulations. It is shown that the full divergence of the fast electron beam is defined by two complementary physical effects: the regular radial beam deviation depending on the electron radial position and the angular dispersion. If the scale length of the preplasma surrounding the solid target is sufficiently low, the radial deviation is determined by the transverse component of the laser ponderomotive force. The random angular dispersion is due to the small scale magnetic fields excited near the critical density due to the collisionless Weibel instability. When a preplasma is present, the radial beam deviation increases due to the electron acceleration in larger volumes and can become comparable to the local angular dispersion. This effect has been neglected so far in most of the fast electron transport calculations, overestimating significantly the beam collimation by resistive magnetic fields. Simulations with a two-dimensional cylindrically-symmetric hybrid code accounting for the electron radial velocity demonstrate a substantially reduced strength and a shorter penetration of the azimuthal magnetic field in solid targets.
Beams of fast electrons have been generated from the ultra-intense laser interaction (6×1019W cm−2, 40fs) with aluminum foil targets. The dynamics of fast-electron propagation as well as the level of induced in-depth heating have been investigated using the optical emission from the foil’s rear side. The dependence of the emitted signals spectrum and size on the target thickness allowed the identification of the coherent (coherent transition radiation) and incoherent (thermal radiation) mechanisms of the optical emission. We demonstrate a two-temperature energy distribution for the laser-generated fast-electron population: a divergent bulk component (θbulk=35°±5°) with ≈35% of the laser focal spot energy and a 400–600keV temperature, plus a relativistic tail highly collimated (θtail=7°±3°), with a 10MeV temperature and a periodic modulation in microbunches, representing less than 1% of the laser energy. Important yields of thermal emission, observed for targets thinner than 50μm, are consequence of a hot plasma near the front surface. The important heating at shallow depth (<15μm) results from collective mechanisms associated to the fast-electron transport, in particular from a resistive heating upon the neutralizing return current of background electrons. For deeper layers, because of the bulk component divergence, the fast-electron energy losses are dominated by collisions.
The transport of an intense electron beam produced by ultrahigh intensity laser pulses through metals and insulators has been studied by high resolution imaging of the optical emission from the targets. In metals, the emission is mainly due to coherent transition radiation, while in plastic, it is due to the Cerenkov effect and it is orders of magnitude larger. It is also observed that in the case of insulators the fast-electron beam undergoes strong filamentation and the number of filaments increases with the target thickness. This filamented behavior in insulators is due to the instability of the ionization front related to the electric field ionization process. The filamentary structures characteristic growth rate and characteristic transversal scale are in agreement with analytical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.